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applications, we obtain the complex unit gain graphs with 
rank 2, and investigate the complex unit gain graphs with 
exactly two eigenvalues different from 0 and −1.
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1. Introduction

Let G be a connected graph with vertex set V and edge set E, and let T be the 
multiplicative group of complex units, i.e., T = {z ∈ C∗ | |z| = 1}. For any number 
z ∈ C, denote by z∗ the conjugate of z, and zr and zi the real part and the imaginary 
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part of z, respectively. The complex unit gain graph Φ = (G, T , ϕ) is a graph with 
another structure ϕ: �E → T such that ϕ(vu) = ϕ(uv)∗ for any {u, v} ∈ E, where 
�E = {uv, vu | {u, v} ∈ E} is the set of oriented edges; see [13]. The graph G is the 
underlying graph of Φ and the function ϕ is the gain function of Φ. The adjacency 
matrix of Φ is an n × n matrix A(Φ) = [aij ] defined by aij = ϕ(vivj) if {vi, vj} ∈ E

and 0 otherwise. Clearly, A is always a Hermitian matrix. Thus, the eigenvalues of A
are real and can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn, where n = |V |. The eigenvalues 
of A(Φ) are called the eigenvalues of Φ. The multiset of all eigenvalues together with 
their multiplicities is the spectrum of Φ, denoted by Sp(Φ). For convenience, we shall 
abbreviate the “complex unit gain graph” to C-graph.

Two C-graphs Φ = (G, T , ϕ) and Φ′ = (G, T , ϕ′) are switching equivalent
if there is a map ζ: V (G) → T such that ϕ′(uv) = ζ(u)∗ϕ(uv)ζ(v). In this 
case, the map ϕ′ can be written as ϕζ. Note that diag(ζ(v1), ζ(v2), . . . , ζ(vn))−1 =
diag(ζ(v1)∗, ζ(v2)∗, . . . , ζ(vn)∗). It leads to that

A(Φ′) = diag(ζ(v1), ζ(v2), . . . , ζ(vn))−1A(Φ)diag(ζ(v1), ζ(v2), . . . , ζ(vn)).

Therefore, Φ and Φ′ share the same spectrum. It is clear that the switching equivalence 
is an equivalent relation. Denote by [Φ] the equivalence class containing Φ. By simple 
observations, we have the following result.

Lemma 1. Let Φ = (G, T , ϕ) be a C-graph and u ∈ V (G). Then there exists Φ′ =
(G, T , ϕ′) ∈ [Φ] such that ϕ′(uv) = 1 for any {u, v} ∈ E(G).

Proof. Let ζ be such that ζ(v) = ϕ(vu) for any v ∈ N(u) and ζ(x) = 1 for any x ∈
V (G) \ N(u). Therefore, (ϕζ)(vu) = ζ(u)∗ϕ(uv)ζ(v) = 1 for any u ∼ v. Thus, the 
C-graph Φ′ = (G, T , ϕζ) is as desired. �

Clearly, each graph G can be regarded as a C-graph Φ = (G, T , ϕ) with ϕ(uv) = 1 for 
any {u, v} ∈ E(G). The adjacency matrix of this C-graph is just the adjacency matrix 
of the graph G. Recall that a mixed graph D is defined to be an ordered triple (V, E, A), 
where V is the vertex set, and E and A are respectively the undirected edge set and the 
directed edge set with E∩A = ∅. The underlying graph of D is an undirected graph Γ(D)
with vertex set V and u ∼ v if either uv ∈ A, vu ∈ A or uv ∈ E. The mixed graph D
can be regarded as the C-graph Φ = (Γ(D), T , ϕ) with ϕ(uv) = 1 if uv ∈ E, i if uv ∈ A
or −i if vu ∈ A. Therefore, the adjacency matrix of the C-graph is just the Hermitian 
matrix of D, which is proposed by Liu and Li [10] and Guo and Mohar [8] independently. 
For the recent results on this topic, we turn the readers to see [1,4,9,12,14], for examples.

Throughout this paper, we always write Kn, Kn1,n2,...,nk
and Pn for the complete 

graph, the complete multipartite graph and the path respectively. For two positive num-
bers m, n, denote by en the all-one vector of length n, In the identity matrix of order 
n and Jm×n the all-one matrix of order m × n. If the sizes of such matrices are clear, 
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we delete the subscripts. Denote by G the complement of G and G∇H the join of two 
graphs G and H. If ϕ(uv) = 1 for all uv ∈ �E, we simply denote Φ = (G, T , ϕ) by G′.

We finally define a graph which will play an important role in the paper. Let 
V1, V2, . . . , Vk be the color sets of Kn1,n2,...,nk

. If the C-graph Φ = (Kn1,n2,...,nk
, T , ϕ)

satisfies:

(a) ϕ(vsvt) = ηst for any vs ∈ Vs, vt ∈ Vt and 1 ≤ s < t ≤ k;
(b) η1t = 1 for any 2 ≤ t ≤ k,

then Φ is called a standard k-partite graph, denoted by (Kn1,n2,...,nk
; [ηst | 2 ≤ s <

t ≤ k]). Clearly, the undirected graph K ′
n1,n2,...,nk

is a standard k-partite graph, 
that is, K ′

n1,n2,...,nk
= (Kn1,n2,...,nk

; [1, 1, . . . , 1]). In particular, we write �Kn1,n2,n3 for 
(Kn1,n2,n3 ; [i]).

The rest of the paper is organized as follows. In Section 2, some preliminary results are 
stated. In Section 3, we characterize the structure of C-graphs with exactly one positive 
eigenvalue, which urges us to determine the C-graphs with rank 2. In Section 4, we find 
a characterization of C-graphs with exactly one positive eigenvalue. As a derived result, 
we investigate the C-graphs with exactly two eigenvalues different from 0 and −1, and 
propose two problems for further study.

2. Preliminaries

Let Φ = (G, T , ϕ) be a C-graph. For an induced subgraph H of G, the corresponding 
induced complex unit gain graph, denoted by Φ[H], is defined as Φ[H] = (H, T , ϕ′)
satisfying ϕ′(uv) = ϕ(uv) for every uv ∈ �E. If V (H) = {v1, v2, . . . , vm}, then we also 
write Φ[v1, v2, . . . , vm] for Φ[H]. It is clear that the adjacency matrix A(Φ[H]) is just the 
principal submatrix of A(Φ) induced by the vertex set of V (H). Therefore, by Corollary 
4.3.37 [5] we know that the famous interlacing theorem also holds.

Lemma 2. Let Φ = (G, T , ϕ) be a C-graph with order n, and H be a subgraph of G. If the 
eigenvalues of Φ and Φ[H] are λ1 ≥ λ2 ≥ · · · ≥ λn and μ1 ≥ μ2 ≥ · · · ≥ μm respectively, 
then λn−m+i ≤ μi ≤ λi for 1 ≤ i ≤ m.

Let π: V (G) = V1 ∪ V2 ∪ · · · ∪ Vs be a partition of V (G) with |Vi| = ni and n =
n1 + n2 + · · · + ns. For 1 ≤ j ≤ s, each vertex set Vj is called a cell of the partition π. 
For 1 ≤ i, j ≤ s, denote by Ai,j the submatrix of A(Φ) whose rows are corresponding to 
Vi and columns are corresponding to Vj. Therefore, the adjacency matrix A(Φ) can be 
written as A(Φ) = [Aij ]. Denote by bij = eTAije/ni the average row-sums of Aij, where 
e denotes the all-one vector. The matrix Aπ = (bij)s×s is called the quotient matrix of 
A(Φ). If, for any i, j, the row-sum of Aij corresponding to any vertex v ∈ Vi equals to 
bij , then π is called an equitable partition of Φ. Let δVi

be a vector indexed by V (G) such 
that δVi

(v) = 1 if v ∈ Vi and 0 otherwise. The matrix P = [δV1δV2 · · · δVs
] is called the 
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characteristic matrix of π. If π is an equitable partition, then A(Φ)P = PAπ. It leads 
to the following famous result.

Lemma 3 ([7, Theorem 9.3.3, page 197]). Let Φ be a C-graph and π an equitable partition 
of Φ with quotient matrix Aπ and characteristic matrix P . Then the eigenvalues of Aπ are 
also eigenvalues of A(Φ). Furthermore, A(Φ) has the following two kinds of eigenvectors:

(i) the eigenvectors in the column space of P , and the corresponding eigenvalues coincide 
with the eigenvalues of Aπ;

(ii) the eigenvectors orthogonal to the columns of P , i.e., those eigenvectors sum to zero 
on each cell of π.

We end up this section by a characterization of complete multipartite graphs.

Lemma 4. A connected graph is complete multipartite if and only if it contains no induced 
K2 ∪K1.

Proof. Assume that G is a complete multi-partite graph. Suppose to the contrary that G
contains induced K2∪K1, say G[v1, v2, v3] = K2∪K1 and G[v1, v2] = K2. Since v3 � v1, 
the vertices v1 and v3 belong to a same color set. Since v3 � v2, the vertices v2 and v3

belong to a same color set. Thus, v1 and v2 are in a same color set, which contradicts 
the fact v1 ∼ v2. And the necessity follows.

Conversely, assume that the connected graph G contains no induced K2∪K1. Assume 
that G is k-chromatic graph and U1, U2, . . . , Uk are color sets of G. It is clear that there 
exists an edge between any two color sets. Suppose to the contrary that G is not complete 
multipartite. There exist two vertices in different color sets, say u1 ∈ U1 and u2 ∈ U2

such that u1 � u2. Note that there is an edge between U1 and U2, say u′
1 ∈ U1 and 

u′
2 ∈ U2 such that u′

1 ∼ u′
2. If u1 � u′

2 then G[u′
1, u

′
2, u1] = K2 ∪ K1; if u2 � u′

1 then 
G[u′

1, u
′
2, u2] = K2 ∪K1; if u1 ∼ u′

2 and u2 ∼ u′
1 then G[u1, u′

2, u2] = K2 ∪K1. All cases 
lead to an induced K2 ∪K1, a contradiction. Hence, the sufficiency follows. �
3. Main results

In this part, we first determine the C-graphs on n vertices with λn ≥ −1. Secondly, 
we characterize the structure of C-graphs with exactly one positive eigenvalue. As an 
application, we obtain the C-graphs with rank 2, which is the main result in [15].

The fact that a connected graph is complete if and only if it contains no induced P3

yields the following result.

Lemma 5. If a connected C-graph Φ = (G, T , ϕ) of order n has exactly one non-negative 
eigenvalue or λn ≥ −1, then G is complete.



274 L. Lu et al. / Linear Algebra and its Applications 608 (2021) 270–281
Proof. Suppose to the contrary that P3 is an induced subgraph of G. Since Φ[P3] has 
spectrum {

√
2, 0, −

√
2}, we have λ2(Φ) ≥ 0 and λn(Φ) ≤ −

√
2 by Lemma 2, a contra-

diction. �
We now determine all C-graphs with λn ≥ −1.

Proposition 1. Let λ1 ≥ λ2 ≥ · · · ≥ λn be all eigenvalues of the connected C-graph 
Φ = (G, T , ϕ). Then λn ≥ −1 if and only if Φ ∈ [K ′

n].

Proof. The sufficiency is clear and we only prove the necessity. Since λn ≥ −1, Lemma 5
means that G is complete. Set V (G) = {v1, v2, . . . , vn}. By Lemma 1, there exists Φ′ =
(G, T , ϕ′) ∈ [Φ] such that ϕ(v1vj) = 1 for 2 ≤ j ≤ n. Now we consider Φ′[v1, vj , vk]
for any {j, k} ⊆ {2, 3, . . . , n}. By Lemma 2, we have λ3(Φ′[v1, vj , vk]) ≥ λn ≥ −1. 
Suppose that ϕ′(vjvk) = a. Then the characteristic polynomial of Φ′[v1, vj , vk] is given 
by f(x) = x3−3x −2ar. Note that f(−1) = 2(1 −ar). If ar < 1, then f(−1) > 0, and thus 
λ3(Φ′[v1, vj , vk]) < −1 due to the image of the function f(x), which is a contradiction. 
Thus, we have ar = 1, that is a = 1. It leads to ϕ′(vjvk) = 1 for any j, k. Thus, 
Φ′ = K ′

n. �
We next consider the C-graphs with λ2 ≤ 0.

Lemma 6. If the connected C-graph Φ = (G, T , ϕ) of order n has exactly one positive 
eigenvalue then G is complete multipartite.

Proof. Sine the connected graphs with 2 ≤ n ≤ 3 are complete multipartite, we may 
assume n ≥ 4. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Φ with λ1 > 0 and λ2 ≤ 0. 
According to Lemma 4, it suffices to show that G contains no induced K2∪K1. Suppose 
to the contrary that K2∪K1 is an induced subgraph of G. It is clear that one of 2K2, P4
and K+

1,3 is an induced subgraph of G, where K+
1,3 is the graph obtained from K1,3 by 

adding a new edge. Denote by V (K+
1,3) = {v1, v2, v3, v4} such that the degrees d(v1) = 1

and d(v2) = 3. Assume without loss of generality that ϕ(v2v1) = ϕ(v2v3) = ϕ(v2v4) = 1
and ϕ(v3v4) = a. By immediate calculations, the characteristic polynomial of Φ[K+

1,3] is 
f(x) = x4−4x2−2arx +1. Since f(0) = 1 > 0 and f(x) has a positive root, by the image 
of the function f(x), we have λ2(K+

1,3) > 0. Note that we also have λ2(Φ[2K2]) = 1 > 0
and λ2(Φ[P4]) ≈ 0.62 > 0. By Lemma 2, we have λ2 > 0, a contradiction. �
Lemma 7. Let Φ = (G, T , ϕ) be a C-graph with G = Kn1,n2,...,nk

and V1, V2, . . . , Vk

being the color sets of G. If λ2 ≤ 0, then there exists a standard k-partite graph Φ′ =
(Kn1,n2,...,nk

; [ηst | 2 ≤ s < t ≤ k]) such that Φ ∈ [Φ′].

Proof. By Lemma 2, any induced C-graph Φ[H] of Φ satisfies λ2(Φ[H]) ≤ λ2(Φ) = 0. 
This fact will be used frequently. Assume that Vj = {v(j)

1 , v(j)
2 , . . . , v(j)

nj } for 1 ≤ j ≤ k.
Lemma 1 implies that there exists Φ1 = (G, T , ϕ1) ∈ [Φ] such that ϕ1(v(1)

1 v) = 1 for any 
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v ∈ V (G) \ V1. For any 2 ≤ s ≤ k and v(s)
a , v(s)

b ∈ Vs, the characteristic polynomial of 
Φ1[v(1)

1 , v(1)
2 , v(s)

a , v(s)
b ] is

f(x) = det

⎡
⎢⎢⎢⎣

x 0 −1 −1
0 x −ϕ1(v(1)

2 v
(s)
a ) −ϕ1(v(1)

2 v
(s)
b )

−1 −ϕ1(v(1)
2 v

(s)
a )∗ x 0

−1 −ϕ1(v(1)
2 v

(s)
b )∗ 0 x

⎤
⎥⎥⎥⎦

= x4 − 4x2 + 2(1 − (ϕ1(v(1)
2 v(s)

a )ϕ1(v(1)
2 v

(s)
b )∗)r).

Since λ2(Φ1[v(1)
1 , v(1)

2 , v(s)
a , v(s)

b ]) ≤ 0, we have f(0) = 2(1 −(ϕ1(v(1)
2 v

(s)
a )ϕ1(v(1)

2 v
(s)
b )∗)r) ≤

0 which leads to ϕ1(v(1)
2 v

(s)
a )ϕ1(v(1)

2 v
(s)
b )∗ = 1. Thus, ϕ1(v(1)

2 v
(s)
a ) = ϕ1(v(1)

2 v
(s)
b ). 

Thereby, we have ϕ1(v(1)
2 v

(s)
a ) = c1s is a constant only dependent on s. By taking a map ζ

such that ζ(v(1)
2 ) = c12 and ζ(x) = 1 for any other vertex x we obtain (ϕ1ζ)(v(1)

2 v
(2)
a ) = 1

for any v(2)
a ∈ V2 and (ϕ1ζ)(uv) = ϕ1(uv) for any u ∼ v and u, v �= v

(1)
2 . Thus, by taking 

ϕ2 = (ϕ1ζ) and Φ2 = (G, T , ϕ2), we have ϕ2(v(1)
1 v) = 1 for any v ∈ V (G) \ V1 and 

ϕ2(v(1)
2 v

(s)
a ) = c∗12c1s = c′1s for any v(s)

a ∈ Vs. In particular, c′12 = 1. Note that for any 
3 ≤ t ≤ k and v(t)

b ∈ Vt, the characteristic polynomial of Φ2[v(1)
1 , v(1)

2 , v(2)
1 , v(t)

b ] is

g(x) = det

⎡
⎢⎢⎢⎣

x 0 −1 −1
0 x −1 −c′1t
−1 −1 x −ϕ2(v(2)

1 v
(t)
b )

−1 −(c′1t)∗ −ϕ2(v(2)
1 v

(t)
b )∗ x

⎤
⎥⎥⎥⎦

= x4 − 5x2 − 2(ϕ2(v(2)
1 v

(t)
b ) + c′1tϕ2(v(2)

1 v
(t)
b )∗)rx + 2(1 − (c′1t)r).

Since λ2(Φ2[v(1)
1 , v(1)

2 , v(2)
1 , v(t)

b ]) ≤ 0, we have g(0) = 2(1 − (c′1t)r) ≤ 0. It leads to 

c′1t = 1 for any 3 ≤ t ≤ k. Therefore, we have ϕ2(v(1)
1 v) = ϕ2(v(1)

2 v) = 1 for any 
v ∈ V (G) \ V1. Similarly, by considering v(1)

j for every 3 ≤ j ≤ n1, we can ultimately 

obtain Φ′ = (G, T , ϕ′) such that ϕ′(v(1)
x v) = 1 for any v(1)

x ∈ V1 and v ∈ V (G) \ V1.
In what follows, we show that ϕ′(v(s)

a v
(t)
b ) is a complex number ηst not really depending 

on a and b. Suppose to the contrary that there exist ϕ′(v(s)
a v

(t)
b ) �= ϕ′(v(s)

a′ v
(t)
b′ ) for some 

2 ≤ s, t ≤ k. Note that the characteristic polynomial of Φ′[v(1)
1 , v(s)

a , v(t)
b , v(t)

b′ ] is

f1(x) = det

⎡
⎢⎢⎢⎣

x −1 −1 −1
−1 x −ϕ′(v(s)

a v
(t)
b ) −ϕ′(v(s)

a v
(t)
b′ )

−1 −ϕ′(v(s)
a v

(t)
b )∗ x 0

−1 ϕ′(v(s)
a v

(t)
b′ )∗ 0 x

⎤
⎥⎥⎥⎦

= x4 − 5x2 + 2(1 − (ϕ′(v(s)v
(t))ϕ′(v(s)v

(t))∗) ),
a b a b′ r
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and the characteristic polynomial of Φ′[v(1)
1 , v(t)

b′ , v
(s)
a , v(s)

a′ ] is

f2(x) = det

⎡
⎢⎢⎢⎣

x −1 −1 −1
−1 x −ϕ′(v(t)

b′ v
(s)
a ) −ϕ′(v(t)

b′ v
(s)
a′ )

−1 −ϕ′(v(t)
b′ v

(s)
a )∗ x 0

−1 −ϕ′(v(t)
b′ v

(s)
a′ )∗ 0 x

⎤
⎥⎥⎥⎦

= x4 − 5x2 + 2(1 − (ϕ′(v(t)
b′ v

(s)
a )ϕ′(v(t)

b′ v
(s)
a′ )∗)r).

Since λ2(Φ′[v(1)
1 , v(s)

a , v(t)
b , v(t)

b′ ]), λ2(Φ′[v(1)
1 , v(t)

b′ , v
(s)
a , v(s)

a′ ]) ≤ 0, we get

f1(0) = 2(1 − (ϕ′(v(s)
a v

(t)
b )ϕ′(v(s)

a v
(t)
b′ )∗)r) ≤ 0 and

f2(0) = 2(1 − (ϕ′(v(t)
b′ v

(s)
a )ϕ′(v(t)

b′ v
(s)
a′ )∗)r) ≤ 0,

which result in ϕ′(v(s)
a v

(t)
b ) = ϕ′(v(s)

a v
(t)
b′ ) and ϕ′(v(t)

b′ v
(s)
a ) = ϕ′(v(t)

b′ v
(s)
a′ ). Therefore, 

ϕ′(v(s)
a v

(t)
b ) = ϕ′(v(s)

a′ v
(t)
b′ ), a contradiction.

The proof is completed. �
The following result follows from combining Lemmas 6 and 7.

Theorem 1. If the connected C-graph Φ = (G, T , ϕ) has exactly one positive eigenvalue, 
then there exists a standard k-partite graph Φ′ = (Kn1,n2,...,nk

; [ηst | 2 ≤ s < t ≤ k]) such 
that Φ ∈ [Φ′].

As an application of the above theorem, we can characterize the C-graphs with rank 2, 
which is the main result in the paper [15].

Proposition 2. Let Φ = (G, T , ϕ) be a connected C-graph of order n. Then Φ has rank 2
if and only if Φ ∈ [K ′

n1,n2
] for some positive integers n1, n2 with n1 + n2 = n or Φ ∈

[ �Kl1,l2,l3 ] for some positive integers l1, l2, l3 with l1 + l2 + l3 = n.

Proof. Assume that Φ = (G, T , ϕ) has spectrum {α, [0]n−2, β}. By Theorem 1, G ∈ [Φ′]
where Φ′ = [(Kn1,n2,...,nk

; [ηst | 2 ≤ s < t ≤ k])]. Since any principal minor of A(Φ′) with 
order 3 has determinant 0, for any 1 ≤ l, s, t ≤ k, we have

detA(Φ[v(l)
1 , v

(s)
1 , v

(t)
1 ]) = det

⎡
⎢⎣

0 ηls ηlt
ηsl 0 ηst
ηtl ηts 0

⎤
⎥⎦ = 2(ηlsηstηtl)r = 0.

It leads to that ηlsηstηtl = ±i. Suppose that k ≥ 4. Therefore, by taking {l, s, t} =
{1, 2, 3}, {1, 2, 4} and {1, 3, 4} respectively, we have
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⎧⎪⎨
⎪⎩

η12η23η31 = η23 = ±i,

η12η24η41 = η24 = ±i,

η13η34η41 = η34 = ±i.

Therefore, we have

detA(Φ[v(1)
1 v

(2)
1 v

(3)
1 v

(4)
1 ]) = det

⎡
⎢⎢⎢⎣

0 1 1 1
1 0 η23 η24
1 η∗23 0 η34
1 η∗24 η∗34 0

⎤
⎥⎥⎥⎦

= 3 − 2(η23η34 + η23η
∗
24 + η24η

∗
34)r �= 0,

which is a contradiction. Thus, we have k ≤ 3. If k = 2, then Φ′ = Kn1,n2 by η12 = 1. If 
k = 3, then Φ′ = �Kl1,l2,l3 by η23 = ±i.

Conversely, it is well-known that Kn1,n2 has only one positive eigenvalue. In fact, 
Sp(Kn1,n2) = {√n1n2, [0]n−2, −√

n1n2}. Assume that the color sets of Kn1,n2,n3 are 
V1, V2, V3 and |Vj | = nj for 1 ≤ j ≤ 3. Denote by δvs−vt the vector with δvs−vt(x) = 1 if 
x = vs, −1 if x = vt, and 0 otherwise. It is easy to verify that A(Φ)δvs−vt = 0 for any 
{vs, vt} ⊆ Vj and 1 ≤ j ≤ 3. It implies that 0 is an eigenvalue of Φ with multiplicity at 
least n − 3. Note that π: V = V1 ∪ V2 ∪ V3 is an equitable partition of Φ with quotient 
matrix

Aπ =

⎛
⎜⎝

0 n2 n3
n1 0 n3i

n1 −n2i 0

⎞
⎟⎠ ,

whose eigenvalues are 0 and ±√
n1n2 + n2n3 + n3n1. Thus, Lemma 3 indicates that 

Sp( �Kn1,n2,n3) = {√n1n2 + n2n3 + n3n1, [0]n−2, −√
n1n2 + n2n3 + n3n1}, which has ex-

actly one positive eigenvalue.
This completes the proof. �
Note that the converse of Theorem 1 is not true. For example, the standard 3-partite 

graph Φ = (K1,1,1; [−1]) has spectrum {[1]2, −2}. In the next section, we will further 
investigate the conditions for a C-graph having exactly one positive eigenvalue.

4. Further results and discussions

Let Φ = (Kn1,n2,...,nk
; [ηst | 2 ≤ s < t ≤ k]) be a standard k-partite graph with color 

sets V1, V2, . . . , Vk. It is clear that π: V = V1 ∪ V2 ∪ · · · ∪ Vk is an equitable partition of 
Φ with quotient matrix
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Aπ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1
1 0 η23 · · · η2k
1 η32 0 · · · η3k
...

...
...

...
1 ηk2 ηk3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 0 0 · · · 0
0 n2 0 · · · 0
0 0 n3 · · · 0
...

...
...

...
0 0 0 · · · nk

⎤
⎥⎥⎥⎥⎥⎥⎦
.

As similar to the proof of the sufficiency part of Corollary 2, the spectrum of Φ consists 
of 0 with multiplicity n − k and the k eigenvalues of Aπ, due to Lemma 3. Thus, Φ has 
exactly one positive eigenvalue if and only if Aπ has exactly one positive eigenvalue. Note 
that the matrix Aπ is congruent to the matrix

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 0 0 · · · 0
0 n2 0 · · · 0
0 0 n3 · · · 0
...

...
...

...
0 0 0 · · · nk

⎤
⎥⎥⎥⎥⎥⎥⎦

−1/2

·

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1
1 0 η23 · · · η2k
1 η32 0 · · · η3k
...

...
...

...
1 ηk2 ηk3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 0 0 · · · 0
0 n2 0 · · · 0
0 0 n3 · · · 0
...

...
...

...
0 0 0 · · · nk

⎤
⎥⎥⎥⎥⎥⎥⎦

1/2

,

which is similar to the matrix

A′′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1
1 0 η23 · · · η2k
1 η32 0 · · · η3k
...

...
...

...
1 ηk2 ηk3 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore, Aπ has exactly one positive eigenvalue if and only if A′′ has exactly one pos-
itive eigenvalue. Let Φπ = (Kk, T , ϕ) be a C-graph such that V (Kn) = {v1, v2, . . . , vk}
and ϕ(v1vs) = 1 for any 2 ≤ s ≤ k and ϕ(vsvt) = ηst for 2 ≤ s < t ≤ k. The C-graph 
Φπ is called the congruent quotient graph of the standard k-partite graph Φ. Clearly, the 
adjacency matrix of Φπ is A′′. Thus, we have shown the following result.

Lemma 8. The standard k-partite graph Φ = (Kn1,n2,...,nk
; [ηst | 2 ≤ s < t ≤ k]) has 

exactly one positive eigenvalue if and only if Φπ has exactly one positive eigenvalue.

Combining Theorem 1 and Lemma 8, we get the following result.
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Theorem 2. The connected C-graph Φ = (G, T , ϕ) has exactly one positive eigenvalue if 
and only if there exists a standard k-partite graph Φ′ = (Kn1,n2,...,nk

; [ηst | 2 ≤ s < t ≤
k]), whose congruent quotient graph Φ′

π has exactly one positive eigenvalue, such that 
Φ ∈ [Φ′].

As stated above, to completely determine the C-graphs with exactly one positive 
eigenvalue, it only needs to determine the Φπ with exactly one positive eigenvalue.

Lemma 9. Let Φ = (Kn, T , ϕ) be a connected C-graph with vertex set V = {v1, v2, . . . , vn}
and ϕ(v1vs) = 1 for any 2 ≤ s ≤ n. If Φ has exactly one positive eigenvalue, then 
(ϕ(vsvt))r ≥ 0 for any 2 ≤ s < t ≤ n and (ϕ(vavb)ϕ(vbvc)ϕ(vcva))r ≥ 0 for any 
2 ≤ a < b < c ≤ n.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Φ. Since λ2 ≤ 0, for any in-
duced subgraph H of Kn we get λ2(Φ[H]) ≤ 0 by Lemma 2. For any 2 ≤ s < t ≤ n, 
the characteristic polynomial of Φ[v1, vs, vt] is f(x) = x3 − 3x − 2(ϕ(vsvt))r. Since 
λ2(Φ[v1, vs, vt]) ≤ 0, we have f(0) = −2(ϕ(vsvt))r ≤ 0, and thus ϕ(vsvt)r ≥ 0. By 
considering Φ[va, vb, vc], one can similarly obtain (ϕ(vavb)ϕ(vbvc)ϕ(vcva))r ≥ 0. �

Unfortunately, it could happen that a C-graph Φ = (Kn, T , ϕ) with V =
{v1, v2, . . . , vn} satisfies

(ϕ(vsvt))r ≥ 0 for 2 ≤ s < t ≤ n, and (ϕ(vavb)ϕ(vbvc)ϕ(vcva))r ≥ 0

for 2 ≤ a < b < c ≤ n,

yet Φ has more than one positive eigenvalue. For example, the C-graph Φ = (K4, T , ϕ)
with ϕ(v1vs) = 1 for 2 ≤ s ≤ 4, ϕ(v2v3) = 1/

√
2 − i/

√
2, ϕ(v3v4) = 1/

√
2 + i/

√
2

and ϕ(v4v2) = 7/25 + 24i/25 has spectrum {2.72, 0.05, −0.78, −1.99}. It satisfies the 
conditions in Lemma 9 but has two positive eigenvalues. Remark, Lemma 1 implies that 
any C-graph with underlying graph being the complete graph Kk corresponds to a graph 
Φπ. We propose the following problem to end this topic.

Problem 1. Completely determine the C-graphs Φ = (Kn, T , ϕ) with exactly one positive 
eigenvalue.

Recently, research on graphs with two eigenvalues having high multiplicity has at-
tracted attention. With respect to adjacency matrix of undirected graphs, Cioabǎ, 
Haemers, and Vermette [2,3] characterized the graphs with all but two eigenvalues equals 
to ±1, and the graphs with all but two eigenvalues equal to −2 or 0. For the distance ma-
trix of undirected graphs, Lu et al. [11] characterized the graphs with all but two distance 
eigenvalues equal to −1 or −3. Huang et al. [6] determined the graphs with all but at most 
three distance eigenvalues equal to 0 or −2. Motivated by such works, we try to character-
ize the C-graph Φ = (G, T , ϕ) with exactly two eigenvalues different from 0 and −1. By 
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Corollary 1, such Φ has exactly one positive eigenvalue and one negative eigenvalue less 
than −1. Therefore, by Theorem 1, there exists Φ′ = (Kn1,n2,...,nk

; [ηst | 2 ≤ s < t ≤ k])
such that Φ ∈ [Φ′].

By arguments above, to make sure that Φ′ has exactly two eigenvalues different from 
0 and −1, it only needs to make sure that Aπ has exactly two eigenvalues different from 
0 and −1. However, it is not easy to deal with this problem. We here present a result 
below.

Theorem 3. Let Φ = (G, T , ϕ) be a connected C-graph of order n such that G contains 
no K4 as its subgraph. Then Φ has exactly two eigenvalues different from 0 and −1 if 
and only if Φ ∈ [Φ′], where Φ′ is Kn1,n2 , �Kn1,n2,n3 or (Kn1,n2,n3 ; [η23]) with (η23)r =
n1n2+n2n3+n3n1−1

2n1n2n3
.

Proof. The sufficiency follows from direct calculations. We next show the necessity. Sup-
pose that −1 is not an eigenvalue of Φ. Then, Φ has rank 2, and Corollary 2 leads to 
Φ ∈ [Kn1,n2 ] or Φ ∈ [ �Kn1,n2,n3 ]. Suppose that −1 is an eigenvalue of Φ. Since Φ has only 
one positive eigenvalue, Theorem 1 indicates that there exists Φ′ = (Kn1,n2,...,nk

; [ηst |
2 ≤ s < t ≤ k]) such that Φ ∈ [Φ′]. Since G contains no K4, we have k ∈ {2, 3}. If k = 2
then Φ′ = Kn1,n2 which has no −1 as an eigenvalue. If k = 3 then Φ′ = (Kn1,n2,n3 ; [η23])
and

Aπ =

⎡
⎢⎣

0 1 1
1 0 η23
1 η32 0

⎤
⎥⎦ ·

⎡
⎢⎣
n1 0 0
0 n2 0
0 0 n3

⎤
⎥⎦ .

Therefore, Φ′ has −1 as an eigenvalue if and only if Aπ has −1 as an eigenvalue if and 
only if det(Aπ + I) = 0 if and only if (η23)r = n1n2+n2n3+n3n1−1

2n1n2n3
.

The proof is completed. �
We end up this paper by proposing the following problem.

Problem 2. Completely determine the C-graphs with exactly two eigenvalues different 
from 0 and −1.
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