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ABSTRACT
Let B(n, k) be the subgraph of the Boolean lattice BLn induced by the
kth and (k + 1)th layers. The distance spectrum of BLn was obtained
by Aalipour et al. and Koolen et al. proved that BLn is determined
by its distance spectrum. In this paper, we introduce a new method
to verify that a quotient matrix contains all distance eigenvalues of
a graph, and we get the distance spectrum of B(n, k) by using this
method. It is proved that B(n, k) has exactly four distinct distance
eigenvalues, and its diameter can be arbitrarily large.
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1. Introduction

In this paper, we only consider connected simple graphs. Let � = (V ,E) be a connected
graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. The distance
between vi and vj, denoted by d(vi, vj) (or di,j for short), is defined as the length of a shortest
path between vi and vj. The diameter of �, denoted by d(�), is the largest distance in �.
The distance matrix of �, denoted byD(�), is the n × nmatrix whose (i, j)-entry is equal
to di,j, for 1 ≤ i, j ≤ n. The distance eigenvalues of � are the eigenvalues ofD(�). Let ∂1 ≥
∂2 ≥ · · · ≥ ∂s be all distinct eigenvalues ofD(�)withmultiplicitiesm1,m2, . . . ,ms. By the
Perron–Frobenius theorem (see [1, Theorem 2.2.1]), we have ∂1 ≥ |∂t| and m1 = 1. The
multiset of such eigenvalues together with their multiplicities is the distance spectrum of
�, denoted by SpD(�) = {∂1, ∂2, . . . , ∂n}. For more details about distance eigenvalues, we
refer the reader to [2–4].

The Boolean lattice BLn (or hypercube Qn) is the graph whose vertices are all subsets
of [n] = {1, . . . , n} and two subsets are adjacent if their symmetric difference has precisely
one element. The kth layer Lk of BLn is the family of all k-subsets of [n]. For 0 ≤ k ≤ n − 1,
letB(n, k)denote the subgraph ofBLn induced by the layersLk andLk+1. In detail, the graph
B(n, k) has vertex set V(B(n, k)) = {S ⊆ [n] | |S| = k or k + 1} and two vertices S1 and S2
are adjacent if S1 ⊂ S2 or S2 ⊂ S1. The distance spectrum of BLn was given by Aalipour
et al. [2], and Koolen et al. [5] proved that BLn is determined by its distance spectrum, that
is, there is no graph sharing the same distance spectrum with BLn but not isomorphic to

CONTACT Qiongxiang Huang huangqx@xju.edu.cn, huangqxmath@163.com College of Mathematics and
Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, People’s Republic of China

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03081087.2019.1659221&domain=pdf&date_stamp=2019-08-27
mailto:huangqx@xju.edu.cn
mailto:huangqxmath@163.com


2 L. LU AND Q. HUANG

it. Recently, Mirafzal [6] obtained the adjacency eigenvalues of the line graph of B(n, 1),
and this result was generalized by Huang and Huang [7], who obtained the adjacency
eigenvalues of the line graph of B(n, k) for 1 ≤ k ≤ n − 1.

The elementary problem to investigate the distance spectrum of a graph is to calculate
its distance spectrum. However, there are no general strategies to calculate the distance
spectrum of a graph up to now. One may obtain some distance eigenvalues of a graph by
using the knowledge of equitable partition and quotient matrix, which will be introduced
in Section 2. Moreover, Godsil and Royle [8, Theorem 9.4.1] give a condition that any
eigenvalue of a graph is also an eigenvalue of a quotient matrix. Motivated by this idea,
we obtain a quotient matrix of the distance matrix of B(n, k) which contains all distance
eigenvalues of B(n, k) by using a totally different method. We think such a method may be
useful to obtain the distance spectra of some other graphs.

It is known that any connected graph with diameter d has at least d+ 1 distinct adja-
cency eigenvalues [9]. However, it is not true for distance eigenvalues. In [10], the authors
proposed the question ‘Are there connected graphs that are not distance regular with diam-
eter d and having less than d+ 1 distance eigenvalues?’ This question was answered by
Aalipour et al. [2], who constructed a class of non-regular connected graphs having atmost
5 distinct distance eigenvalues with diameter d+ 1 for any d. In this paper, we show that
B(n, k) has exactly 4 distinct distance eigenvalues with diameter not less than 2k+ 1 by
completely determining the distance spectrum of it.

2. Preliminaries

In this part, we introduce the knowledge of the equitable partition of a symmetric real
matrix. The knowledge of equitable partition contains very rich content, and it is a very
powerful tool in spectral graph theory. Here we give a brief description of it and refer the
reader to [1, Section 2.3] or [8, Section 9.3] for details.

Suppose thatM is an n × n symmetric real matrix whose rows and columns are indexed
by X = {1, . . . , n}. Let � be a partition of X with cells X1, . . . ,Xm. The matrix M can be
written as

M =

⎛
⎜⎝
M1,1 · · · M1,m
...

...
Mm,1 · · · Mm,m

⎞
⎟⎠

where Mi,j is the submatrix of M whose rows and columns are induced by Xi and Xj,
respectively, for 1 ≤ i, j ≤ m. Let bij be the average row sum ofMi,j. Then Bm = (bij)m×m
is the quotient matrix of M with respect to the partition �. Especially, if the row sum
of each block Mi,j is a constant, then the partition is an equitable partition. For a subset
V ⊆ {1, 2, . . . , n}, the characteristic vector δV ∈ Rn of V is the vector such that δV(i) = 1
if i ∈ V and 0 otherwise. The characteristic matrix P with respect to the partition � is the
n × m matrix whose jth column is the characteristic vector δXj of Xj for 1 ≤ j ≤ m, that
is, P = [δX1 | δX2 | · · · | δXm]. Therefore, it is not hard to verify thatMP = PBm. This fact
implies the following result.
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Lemma 2.1 ([8]): Let M be a real symmetric matrix, and let � be an equitable partition of
M with quotient matrix Bm. Then we have

(i) all eigenvalues of Bm are also eigenvalues of M;
(ii) let x be an eigenvector of M corresponding to λ, if λ is not an eigenvalue of Bm then the

summation of x on each cell is 0;
(iii) if y is an eigenvector of Bm corresponding to λ′, then Py is an eigenvector of M

corresponding to λ′, where P is the characteristic matrix.

Suppose that � is a connected graph of order n. Let D be the distance matrix of � and
�: V = V1 ∪ · · · ∪ Vm a partition of the vertex set V. Suppose that Dij is the submatrix
of D whose rows and columns are induced by Vi and Vj for 1 ≤ i, j ≤ m. For u ∈ Vi, the
row sum of Dij corresponding to u is

∑
v∈Vj

d(u, v). Thus, the partition � is an equitable
partition if, for 1 ≤ i, j ≤ m and u ∈ Vi, the value

∑
v∈Vj

d(u, v) is a constant independent
of the choice of u. In this case, we say that� is a distance equitable partition of�. Therefore,
we get the following result by applying Lemma 2.1 to a distance matrix.

Corollary 2.2: Let � be a connected graph with distance matrix D and � a distance
equitable partition of � with quotient matrix Bm ofD. Then we have

(i) all eigenvalues of Bm are distance eigenvalues of �;
(ii) let x be an eigenvector ofD(�) corresponding to ∂ , if ∂ is not an eigenvalue of Bm then

the summation of x on each cell of � is 0.

LetG ≤ Aut(�) be a subgroup of the automorphism group of the graph�. Suppose that
O1,O2, . . . ,Ok are all orbits of V(�) under the action of G. Then �G: V(�) = O1 ∪ O2 ∪
· · · ∪ Ok is a partition of V(�) which is called the orbit partition of � on G. The following
result confirms that an orbit partition is also a distance equitable partition.

Lemma 2.3 ([11, Lemma 2.1.]): Let � be a connected graph and G ≤ Aut(�). If �G :
V(�) = O1 ∪ O2 ∪ · · · ∪ Ok is the orbit partition of � with respect to G, then �G is also
a distance equitable partition.

3. Structure of B(n, k)

In this section, we first introduce some notations and symbols for B(n, k) and give some
basic structural properties of B(n, k). Next, we present two types of distance equitable
partitions of B(n, k) according to its structure. For any subset A ⊆ [n], let A = [n] \ A.

Claim 1: For two positive integers k and n such that 0 ≤ k ≤ n − 1, we have B(n, k) ∼=
B(n, n − 1 − k).

Proof: Let ϕ: V(B(n, k)) → V(B(n, n − 1 − k)) be the map defined by ϕ(S) = S for
any S ∈ V(B(n, k)). Clearly, ϕ is a bijection. Moreover, if S1 ∼ S2 in B(n, k) then S1 ⊂
S2 or S2 ⊂ S1. The former case leads to ϕ(S2) ⊂ ϕ(S1), and the latter case leads to
ϕ(S1) ⊂ ϕ(S2), and thusϕ(S1) ∼ ϕ(S2) inB(n, n − 1 − k). Conversely, ifϕ(S1) ∼ ϕ(S2) in
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B(n, n − 1 − k), then ϕ(S1) ⊂ ϕ(S2) or ϕ(S2) ⊂ ϕ(S1). The former case leads to S2 ⊂
S1, and the latter case leads to S1 ⊂ S2, and thus S1 ∼ S2 in B(n, k). Therefore, ϕ is an
isomorphism between B(n, k) and B(n, n − 1 − k). �

If k > (n − 1)/2 in the graph B(n, k), then, by taking k′ = n − 1 − k, the graph
B(n, k′) ∼= B(n, k) satisfies k′ ≤ (n − 1)/2. Thus, we may always assume that k ≤ (n −
1)/2, i.e. n ≥ 2k + 1, for B(n, k) throughout this paper.

LetVk = {S ⊂ [n] | |S| = k} andVk+1 = {S ⊂ [n] | |S| = k + 1} be the collections of k-
subsets and the k+ 1-subsets of [n], respectively. It is clear that |Vk| = (n

k
)
, |Vk+1| = ( n

k+1
)

and V(B(n, k)) = Vk ∪ Vk+1 is a partition. Note that a bipartite graph � with partition
V1 ∪ V2 is called (r1, r2)-semi-regular if each vertex in V1 has degree r1 and each vertex in
V2 has degree r2.

Claim 2: The graph B(n, k) is bipartite with two parts Vk and Vk+1. Furthermore, B(n, k) is
k+ 1-regular if n = 2k+ 1 and is (n − k, k + 1)-semi-regular if n>2k+ 1.

Proof: By the definition, Vk and Vk+1 are two independent sets of B(n, k), and thus B(n, k)
is bipartite. Moreover, each vertex S = {s1, s2, . . . , sk} ∈ Vk has n−k neighbours {S ∪ {s} |
s ∈ S} in Vk+1. Similarly, each vertex of Vk+1 has k+ 1 neighbours in Vk. It means that
B(n, k) is k+ 1-regular if n = 2k+ 1 and (n − k, k + 1)-semi-regular if n>2k+ 1. �

For A ∈ Vk and 0 ≤ i ≤ k, define

Vk,A(i) = {S ∈ Vk | |S ∩ A| = k − i},
Vk+1,A(i) = {S ∈ Vk+1 | |S ∩ A| = k − i}.

Since n ≥ 2k + 1, we have Vk,A(i),Vk+1,A(i) �= ∅ for 0 ≤ i ≤ k. Particularly, Vk,A(0) =
{A}. By simple observations and calculations, we have the following claim.

Claim 3: The cardinalities of Vk,A(i) and Vk+1,A(i) are

|Vk,A(i)| =
(

k
k − i

)(
n − k
i

)
and |Vk+1,A(i)| =

(
k

k − i

)(
n − k
i + 1

)

for 0 ≤ i ≤ k. Moreover, Vk = ⋃k
i=0 Vk,A(i) and Vk+1 = ⋃k

i=0 Vk+1,A(i) for any A ∈ Vk.

In terms of these notations, we have the following result.

Lemma 3.1: Let A ∈ Vk and S ∈ V(B(n, k)). Then, for any 0 ≤ i ≤ k, the distance
d(S,A) = 2i if and only if S ∈ Vk,A(i), and d(S,A) = 2i + 1 if and only if S ∈ Vk+1,A(i).

Proof: Since B(n, k) is bipartite with the partition Vk ∪ Vk+1 and A ∈ Vk, it is easy to see
that d(S,A) is even if and only if S ∈ Vk and d(S,A) is odd if and only if S ∈ Vk+1.

It is clear that d(S,A) = 0 if and only if S = A ∈ Vk,A(0) = {A}. Moreover, d(S,A) = 1
if and only if S = A ∪ {x} for some x ∈ A if and only if S ∈ Vk+1,A(0) = {A ∪ {x} | x ∈ A}.
Therefore, the result follows for i = 0. In what follows, we consider the case of i = l ≥ 1
and assume that the result holds for i ≤ l − 1.
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First suppose that d(S,A) = 2l. We have S ∈ Vk and there exists S′ ∈ V(B(n, k))
such that S′ ∼ S and d(S′,A) = 2l − 1 = 2(l − 1) + 1. By inductive assumption, we have
S′ ∈ Vk+1,A(l − 1), and thus, we may assume that S′ = {x1, . . . , xk−l+1, xk−l+2, . . . , xk+1},
where x1, . . . , xk−l+1 ∈ A and xk−l+2, . . . , xk+1 ∈ A. Since S′ ∼ S, we have S ⊂ S′, that
is, S = S′ \ {xj} for some 1 ≤ j ≤ k + 1. If k − l + 2 ≤ j then S ∈ Vk,A(l − 1) and thus
d(S,A) = 2(l − 1) by inductive assumption, a contradiction. Therefore, we have j ≤ k −
l + 1 and thus S ∈ Vk,A(l). Conversely, suppose that S ∈ Vk,A(l). Since l ≥ 1, there exists
x ∈ A \ S. Therefore, the vertex S′ = S ∪ {x} is adjacent to S. Note that S′ ∈ Vk+1,A(l − 1).
We have d(S,A) ≤ d(S, S′) + d(S′,A) = 1 + 2(l − 1) + 1 = 2l. If d(S,A) = 2l′ < 2l then
we have S ∈ Vk,A(l′) by inductive assumption, a contradiction. It follows that d(S,A) = 2l.

Next suppose that d(S,A) = 2l + 1.Wehave S ∈ Vk+1 and thus there exists S′ ∈ Vk such
that S′ ∼ S and d(S′,A) = 2l. By the arguments of above segment, we have S′ ∈ Vk,A(l) and
S′ = S \ {xj} for some xj ∈ S. Thus, wemay assume that S′ = {x1, . . . , xk−l, xk−l+1, . . . , xk},
where x1, . . . , xk−l ∈ A and xk−l+1, . . . , xk ∈ A. We claim that S ∈ Vk+1,A(l), i.e. |S ∩ A| =
k − l. Otherwise, we have xj ∈ A, which leads to S ∈ Vk+1,A(l − 1) and thus d(S,A) =
2(l − 1) + 1 = 2l − 1 by inductive assumption, a contradiction. Conversely, suppose that
S ∈ Vk+1,A(l). Let S′ = S \ {x} for some x ∈ S \ A. We have S′ ∼ S and S′ ∈ Vk,A(l). There-
fore, d(S,A) ≤ d(S, S′) + d(S′,A) = 2l + 1 by the arguments of the above segment. If
d(S,A) = 2l′ + 1 < 2l + 1, then S ∈ Vk+1,A(l′) again by inductive assumption, a contra-
diction. It follows that d(S,A) = 2l + 1.

This completes the proof. �

For B ∈ Vk+1, let

V+
k,B(i) = {S ∈ Vk | |S ∩ B| = k + 1 − i} for 1 ≤ i ≤ k + 1,

V+
k+1,B(i) = {S ∈ Vk+1 | |S ∩ B| = k + 1 − i} for 0 ≤ i ≤ k + 1.

Since n ≥ 2k + 1, we have V+
k,B(i),V+

k+1,B(j) �= ∅ for 1 ≤ i ≤ k + 1 and 0 ≤ j ≤ k, and
V+
k+1,B(k + 1) = ∅ if n = 2k+ 1 and V+

k+1,B(k + 1) �= ∅ if n>2k+ 1. As similar as
Claim 3, we have the following claim.

Claim 4: The cardinalities of V+
k,B(i) and V+

k+1,B(i) are

|V+
k,B(i)| =

(
k + 1

k + 1 − i

)(
n − k − 1
i − 1

)
and |V+

k+1,B(j)| =
(

k + 1
k + 1 − j

)(
n − k − 1

j

)

for 1 ≤ i ≤ k + 1 and 0 ≤ j ≤ k + 1. Moreover, Vk = ⋃k+1
i=1 V+

k,B(i) and Vk+1 =⋃k+1
i=0 V+

k+1,B(i) for any B ∈ Vk+1.

As similar to the proof of Lemma 3.1, we get the following result.

Lemma 3.2: Let B ∈ Vk+1 and S ∈ V(B(n, k)). Then the distance d(S,B) = 2i if and only if
S ∈ V+

k+1,B(i) for any 0 ≤ i ≤ k + 1, and d(S,B) = 2i − 1 if and only if S ∈ V+
k,B(i) for any

1 ≤ i ≤ k + 1.

For any A ∈ Vk and B ∈ Vk+1, Lemma 3.1 means that the longest path from A to other
vertices of B(n, k) has length 2k+ 1, and Lemma 3.2 means that the longest path from B to
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other vertices of B(n, k) has length 2k+ 1 if n = 2k+ 1 and has length 2k+ 2 if n>2k+ 1.
Therefore, we have the following result.

Corollary 3.3: Let n and k be two positive integers such that n ≥ 2k + 1. The graph B(n, k)
has diameter 2k+ 1 if n = 2k+ 1 and has diameter 2k+ 2 if n>2k+ 1.

Let Sn be the symmetric group on the set [n]. For each σ ∈ Sn, let σ̃ : V(B(n, k)) →
V(B(n, k)) be the map defined by σ̃ (S) = {σ(s) | s ∈ S} for S ∈ V(B(n, k)) and let S̃n =
{σ̃ | σ ∈ Sn}. We get the following result.

Claim 5: The map σ̃ ∈ Aut(B(n, k)) and thus S̃n ≤ Aut(B(n, k)). Moreover, Vk and Vk+1
are orbits on S̃n.

Proof: By the definition, one can easily verify that σ̃ ∈ Aut(B(n, k)) and S̃n ≤
Aut(B(n, k)). For any two vertices S = {s1, . . . , sk} and S′ = {s′1, . . . , s′k} of Vk, by taking
σ ∈ Sn such that σ(si) = s′i for 1 ≤ i ≤ k, we have σ̃ (S) = S′. Therefore, Vk is an orbit.
Similarly, Vk+1 is also an orbit. �

Claim 6: The partition �: V(B(n, k)) = Vk ∪ Vk+1 is a distance equitable partition of
B(n, k) with quotient matrix

D� =
(

α11(n, k) α12(n, k)
α21(n, k) α22(n, k)

)

where α11(n, k) = 2k
(n−1

k
)
, α12(n, k) = 2k

(n−1
k+1
)+ ( n

k+1
)
, α21(n, k) = 2(k + 1)

(n−1
k
)− (n

k
)

and α22(n, k) = 2(k + 1)
(n−1
k+1
)
.

Proof: From Claim 5, � is an orbit partition of B(n, k). Therefore, Lemma 2.3 indicates
that� is a distance equitable partition of B(n, k). Assume that the quotient matrix is given
by

D� =
(

α11(n, k) α12(n, k)
α21(n, k) α22(n, k)

)
.

For any A ∈ Vk and B ∈ Vk+1, by Claims 3, 4 and Lemmas 3.1 and 3.2, we have

α11(n, k) =
∑
S∈Vk

d(S,A) =
k∑

i=0

∑
S∈Vk,A(i)

d(S,A)

=
k∑

i=0

∑
S∈Vk,A(i)

2i =
k∑

i=0
2i
(

k
k − i

)(
n − k
i

)
= 2k

(
n − 1
k

)
,

α12(n, k) =
∑

S∈Vk+1

d(S,A) =
k∑

i=0

∑
S∈Vk+1,A(i)

d(S,A)

=
k∑

i=0

∑
S∈Vk,A(i)

(2i + 1) =
k∑

i=0
(2i + 1)

(
k

k − i

)(
n − k
i + 1

)
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= 2k
(
n − 1
k + 1

)
+
(

n
k + 1

)
,

α21(n, k) =
∑
S∈Vk

d(S,B) =
k+1∑
i=1

∑
S∈V+

k,B(i)

d(S,B),

=
k+1∑
i=1

∑
S∈V+

k,B(i)

(2i − 1) =
k+1∑
i=1

(2i − 1)
(

k + 1
k + 1 − i

)(
n − k
i − 1

)

= 2(k + 1)
(
n − 1
k

)
−
(
n
k

)
,

α22(n, k) =
∑

S∈Vk+1

d(S,B) =
k+1∑
i=0

∑
S∈V+

k+1,B(i)

d(S,B)

=
k+1∑
i=0

∑
S∈V+

k+1,B(i)

2i =
k+1∑
i=0

2i
(

k + 1
k + 1 − i

)(
n − k − 1

i

)
= 2(k + 1)

(
n − 1
k + 1

)
.�

By Claim 6, the eigenvalues ofD�, denoted by θ1(n, k) and θ2(n, k), are the roots of the
quadratic equation

f (x) = det(xI − D�) = x2 − 2(n − 1)
(
n − 1
k

)
x −

(
n
k

)(
n

k + 1

)
= 0. (1)

By simple calculations, we have

θ1(n, k), θ2(n, k) =
(
n − 1
k

)⎛⎝(n − 1) ±
√

(n − 1)2 + n2

(n − k)(k + 1)

⎞
⎠ . (2)

From Corollary 2.2, we get the following result.

Lemma 3.4: Let θ1(n, k) and θ2(n, k) be the two roots of Equation (1) given in Equation (2).
Then we have

(i) θ1(n, k) and θ2(n, k) are distance eigenvalues of B(n, k);
(ii) if x is an eigenvector of D(B(n, k)) corresponding to λ different from θ1 and θ2, then∑

v∈Vk
x(v) = ∑

v∈Vk+1
x(v) = 0.

For given a ∈ [n], let Ga = {σ ∈ Sn | σ(a) = a} be the stabilizer of a. Clearly, Ga ≤ Sn
and thus G̃a = {σ̃ | σ ∈ Ga} ≤ S̃n ≤ Aut(B(n, k)). As similar as Claim 5, it is easy to see
that Va,k, Va,k+1, Va,k and Va,k+1 are orbits on G̃a, where

Va,k = {S ∈ Vk | a ∈ S}, Va,k+1 = {S ∈ Vk+1 | a ∈ S},
Va,k = {S ∈ Vk | a �∈ S}, Va,k+1 = {S ∈ Vk+1 | a �∈ S}.
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As similar as Claim 6, we have the following result.

Claim 7: The partition �a : V(B(n, k)) = Va,k ∪ Va,k+1 ∪ Va,k ∪ Va,k+1 is also a distance
equitable partition of B(n, k) with quotient matrix

D�a

=

⎛
⎜⎜⎜⎝

α11(n − 1, k − 1) α12(n − 1, k − 1) α11(n − 1, k) + 2
(n−2
k−1
)

α12(n − 1, k) + 2
(n−2

k
)

α21(n − 1, k − 1) α22(n − 1, k − 1) α21(n − 1, k) + 2
(n−2
k−1
)

α22(n − 1, k) + 2
(n−2

k
)

α11(n − 1, k − 1) + 2
(n−2
k−1
)

α12(n − 1, k − 1) + 2
(n−2

k
)

α11(n − 1, k) α12(n − 1, k)
α21(n − 1, k − 1) + 2

(n−2
k−1
)

α22(n − 1, k − 1) + 2
(n−2

k
)

α21(n − 1, k) α22(n − 1, k)

⎞
⎟⎟⎟⎠ .

where αij(·, ·) is given in Claim 6.

Proof: Since�a is an orbit partition of B(n, k), Lemma 2.3means that�a is also a distance
equitable partition of B(n, k). Denote the quotient matrix by

D�a =

⎛
⎜⎜⎝

d(Va,k,Va,k) d(Va,k,Va,k+1) d(Va,k,Va,k) d(Va,k,Va,k+1)

d(Va,k+1,Va,k) d(Va,k+1,Va,k+1) d(Va,k+1,Va,k) d(Va,k+1,Va,k+1)

d(Va,k,Va,k) d(Va,k,Va,k+1) d(Va,k,Va,k) d(Va,k,Va,k+1)

d(Va,k+1,Va,k) d(Va,k+1,Va,k+1) d(Va,k+1,Va,k) d(Va,k+1,Va,k+1)

⎞
⎟⎟⎠ .

For each A ∈ Va,k, by Lemma 3.1, we have

d(Va,k,Va,k) =
∑
S∈Va,k

d(S,A) =
k∑

i=0

∑
S∈Vk,A(i),a∈S

d(S,A) =
k∑

i=0

∑
S∈Vk,A(i),a∈S

2i

=
k∑

i=0
2i
(

k − 1
k − 1 − i

)(
n − k
i

)
= 2(k − 1)

(
n − 2
k − 1

)
= α11(n − 1, k − 1),

d(Va,k,Va,k+1) =
∑

S∈Va,k+1

d(S,A) =
k∑

i=0

∑
S∈Vk+1,A(i),a∈S

d(S,A) =
k∑

i=0

∑
S∈Vk+1,A(i),a∈S

(2i + 1)

=
k∑

i=0
(2i + 1)

(
k − 1

k − 1 − i

)(
n − k
i + 1

)

= 2(k − 1)
(
n − 2
k

)
+
(
n − 1
k

)
= α12(n − 1, k − 1),

d(Va,k,Va,k) =
∑
S∈Va,k

d(S,A) =
k∑

i=0

∑
S∈Vk,A(i),a �∈S

d(S,A) =
k∑

i=0

∑
S∈Vk,A(i),a�∈∈S

2i

=
k∑

i=0
2i
(
k − 1
k − i

)(
n − k
i

)
= 2k

(
n − 2
k

)

+ 2
(
n − 2
k − 1

)
= α11(n − 1, k) + 2

(
n − 2
k − 1

)
,
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d(Va,k,Va,k+1) =
∑

S∈Va,k+1

d(S,A) =
k∑

i=0

∑
S∈Vk+1,A(i),a�∈S

d(S,A) =
k∑

i=0

∑
S∈Vk+1,A(i),a�∈S

(2i + 1)

=
k∑

i=0
(2i + 1)

(
k − 1
k − i

)(
n − k
i + 1

)

= 2(k − 1)
(
n − 2
k + 1

)
+ 3

(
n − 1
k + 1

)
= α12(n − 1, k) + 2

(
n − 2
k + 1

)
.

Similarly, other entries ofD�a are obtained by Lemmas 3.1 and 3.2. �

To end up this part, we obtain all distinct eigenvalues ofD�a .

Lemma 3.5: Let n and k be two positive integers such that n ≥ 2k + 1. Then we have

(i) the eigenvalues of D�a are θ1(n, k), θ2(n, k), 0 and −2
(n−1

k
)
, which are distance

eigenvalues of B(n, k);
(ii) if x is an eigenvector ofD(B(n, k)) corresponding to λ different from θ1, θ2, 0 or−2

(n−1
k
)
,

then
∑

v∈Va,k
x(v) = ∑

v∈Va,k+1
x(v) = ∑

v∈Va,k
x(v) = ∑

v∈Va,k+1
x(v) = 0 for any a ∈

[n].

Proof: Let y = (y1, y2)T be an eigenvector of D(�) corresponding to the eigenvalue
θi(n, k) for some i ∈ {1, 2}. Let P be the characteristic matrix of the partition �. There-
fore, Lemma 2.1(iii) indicates that Py is an eigenvector of D(B(n, k)) corresponding to
θi(n, k). Note that y∗ = Py ∈ R|V(B(n,k))| is such that y∗(v) = y1 if v ∈ Vk and y∗(v) = y2 if
v ∈ Vk+1. Therefore,

∑
v∈Va,k

y∗(v) = (n−1
k−1
)
y1 �= 0 for any a ∈ [n], and Corollary 2.2(ii)

implies that θi(n, k) is an eigenvalue of D�a . From Claim 7, one can easily verify that
row1(D�a) + row3(D�a) = row2(D�a) + row4(D�a). It follows that 0 is an eigenvalue
ofD�a . Assume that the remaining eigenvalue ofD(�a) is ε. It holds that

θ1(n, k) + θ2(n, k) + 0 + ε = tr(D�a) = α11(n − 1, k − 1) + α22(n − 1, k − 1)

+ α11(n − 1, k) + α22(n − 1, k).

By calculations, we have ε = −2
(n−1

k
)
and thus all eigenvalues ofD�a are θ1(n, k), θ2(n, k),

0, and −2
(n−1

k
)
. Thus, (i) follows.

Assume that x is an eigenvector ofD(B(n, k)) corresponding to λ different from θ1, θ2,
0 or−2

(n−1
k
)
. For any a ∈ [n], since λ is not an eigenvalue ofD�a , Corollary 2.2(iii) means

that x sums to zero on each cell of the partition �a. Thus, (ii) follows. �

4. Distance spectrum of B(n, k)

In this part, we first obtain all distinct distance eigenvalues of B(n, k) and next determine
the multiplicities of them. Let A be a set and m: A → N+ a function. The multiset Am

with underlying set A and multiplicity function m is the collection of all elements of A
and each element a ∈ A occurs m(a) times, that is, Am = {m(a) ∗ a | a ∈ A} where m(a)
counts the number of occurrences of a. Additionally, we may extend the domain of m by
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defining m(x) = 0 for each x �∈ A. Clearly, a set A can be viewed as a multiset Am with
m(a) = 1 for any a ∈ A. For two multisets Am1 and Bm2 , the multi-union of them, denote
by Am1 � Bm2 , is the multiset with the underlying set A ∪ B and multiplicity function m,
where m(η) = m1(η) + m2(η) for any η ∈ A ∪ B. Particularly, let k ∗ Am denote multi-
union of k copies of Am. It is clear that j ∗ Vk,A(i) = {j ∗ S | S ∈ Vk, |S ∩ A| = k − i} is the
multiset with multiplicity functionm such thatm(S) = j for any S ∈ Vk,A(i). Similarly, the
multiset j ∗ Vk+1,A(i) is well-defined. Of course, jmay equal i. We get the following result.

Lemma 4.1: Let n and k be two positive integers such that n ≥ 2k + 1.

(1) If A ∈ Vk, then
⊎k

i=1 i ∗ Vk,A(i) = ⊎
a∈A Va,k and

⊎k
i=1 i ∗ Vk+1,A(i) =⊎

a∈A Va,k+1.
(2) If B ∈ Vk+1 then

⊎k+1
i=1 i ∗ V+

k,B(i) = ⊎
b∈B Vb,k and

⊎k+1
i=1 i ∗ V+

k+1,B(i) =⊎
b∈B Vb,k+1.

Proof: LetAm1 and Bm2 denote the multiset
⊎k

i=1 i ∗ Vk,A(i) and
⊎

a∈A Va,k, respectively.
Notice that each S ∈ Vk,A(i) is distinct, it is clear thatA = ⋃k

i=1 Vk,A(i) = Vk \ Vk,A(0) =
Vk \ {A}. Also by noticing that any k-element subset of Vk other than A is contained
in
⊎

a∈A Va,k, we have B = Vk \ {A}. If S ∈ Vk \ {A} then S ∈ Vk,A(i) for some 1 ≤ i ≤
k. Clearly, S ∈ A only occurs in Vk,A(i) and thus the multiplicity of S in Am1 equals
m1(S) = i. Now we may assume that S = {s1, . . . , sk−i, sk−i+1, . . . , sk} where s1, . . . , sk−i ∈
A, sk−i+1, . . . , sk ∈ A and i ≥ 1. It is easy to see that, for a ∈ A \ {s1, . . . , sk−i}, S ∈ B occurs
exactly one time in each Va,k and thusm2(S) = i due to |A \ {s1, . . . , sk−i}| = i. Therefore,
we have Am1 = Bm2 , that is

⊎k
i=1 i ∗ Vk,A(i) = ⊎

a∈A Va,k. Similarly, one can also obtain
that

⊎k
i=1 i ∗ Vk+1,A(i) = ⊎

a∈A Va,k+1 and (1) holds.
Let Fm3 = ⊎k+1

i=1 i ∗ V+
k,B(i) and Lm4 = ⊎

b∈B Vb,k. It is easy to see that F = Vk. For
each S ∈ Vk, there exists b ∈ B such that b �∈ S and thus S ∈ Vb,k. Therefore, we also
haveL = Vk. Let S be an element of Vk. Assume that S = {s1, . . . , sk+1−i, sk+2−i, . . . , sk} ∈
V+
k,B(i) where s1, . . . , sk+1−i ∈ B and sk+2−i, . . . , sk ∈ B. Since S does not occur in V+

k,B(j)
for any j �= i, it holds that m3(S) = i. Note that, for b ∈ B, S ∈ Vb,k if and only if b ∈
B \ {s1, . . . , sk+1−i}. Therefore,m4(S) = |B \ {s1, . . . , sk+1−i}| = i. Thus,Fm3 = Lm4 , that
is,
⊎k+1

i=1 i ∗ V+
k,B(i) = ⊎

b∈B Vb,k. Similarly, one can also obtain that
⊎k+1

i=1 i ∗ V+
k+1,B(i) =⊎

b∈B Vb,k+1 and (2) holds. �

Let � be a graph and x: V(�) → R a real-valued function on V(�). For a multiset Am

with A ⊆ V(�), denote by x(Am) = ∑
a∈Am x(a) = ∑

a∈A m(a)x(a). Now we are ready to
give one of our main results.

Theorem 4.2: Let n and k be two positive integers such that n ≥ 2k + 1. Then the distinct
distance eigenvalues of B(n, k) are θ1(n, k), θ2(n, k), 0 and −2

(n−1
k
)
.

Proof: Suppose to the contrary that B(n, k) has a distance eigenvalue ∂ different from
θ1(n, k), θ2(n, k), 0 and −2

(n−1
k
)
. Let x be an eigenvector of D(B(n, k)) correspond-

ing to ∂ . By Lemma 3.5 (ii), we have x(Va,k) = x(Va,k+1) = x(Va,k) = x(Va,k+1) = 0 for
any a ∈ [n]. It follows that x(Vk) = x(Va,k) + x(Va,k) = 0 and x(Vk+1) = x(Va,k+1) +
x(Va,k+1) = 0.
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Note that x �= 0. There exists A ∈ Vk such that x(A) �= 0 or B ∈ Vk+1 such that
x(B) �= 0. We only consider the former case since the latter one is similar. Since
D(B(n, k))x = ∂x, we have ∂x(A) = ∑

S∈V(B(n,k)) d(S,A)x(S). Now we partition the
vertex set V(B(n, k) according to the distance from A. By Lemmas 3.1 and 3.2,
we see that {S ∈ V(B(n, k)) | d(S,A) = 1} = Vk+1,A(0), {S ∈ V(B(n, k)) | d(S,A) = 2} =
Vk,A(1), {S ∈ V(B(n, k)) | d(S,A) = 3} = Vk+1,A(1) and, in general, {S ∈ V(B(n, k)) |
d(S,A) = 2i} = Vk,A(i) and {S ∈ V(B(n, k)) | d(S,A) = 2i + 1} = Vk+1,A(i) for 0 ≤ i ≤
k. Thus, we have

∂x(A) =
∑

S∈V(B(n,k))

d(S,A)x(S) =
∑
S∈Vk

d(S,A)x(S) +
∑

S∈Vk+1

d(S,A)x(S)

= x(Vk+1,A(0)) + 2 · x(Vk,A(1)) + 3 · x(Vk+1,A(1))

+ · · · + 2i · x(Vk,A(i)) + (2i + 1) · x(Vk+1,A(i)) + · · ·
+ 2k · x(Vk,A(k)) + (2k + 1) · x(Vk+1,A(k))

= x(Vk+1,A(0)) + x(Vk+1,A(1)) + x(Vk+1,A(2)) + · · · + x(Vk+1,A(k))

+ 2(x(Vk+1,A(1)) + 2x(Vk+1,A(2)) + · · ·
+ ix(Vk+1,A(i)) + · · · + kx(Vk+1,A(k)))

+ 2(x(Vk,A(1)) + 2x(Vk,A(2)) + · · · + ix(Vk,A(i)) + · · · + kx(Vk,A(k)))

= x

( k⋃
i=0

Vk+1,A(i)

)
+ 2x

( k⊎
i=1

i ∗ Vk+1,A(i)

)
+ 2x

( k⊎
i=1

i ∗ Vk,A(i)

)
.

Note that
⋃k

i=0 Vk+1,A(i) = Vk+1, and Lemma 4.1(1) gives
⊎k

i=1 i ∗ Vk+1,A(i) = ⊎
a∈A

Va,k+1 and
⊎k

i=1 i ∗ Vk,A(i) = ⊎
a∈A Va,k. Therefore, we have

∂x(A) = x(Vk+1) + 2x

(⊎
a∈A

Va,k+1

)
+ 2x

(⊎
a∈A

Va,k

)
= x(Vk+1)

+ 2
∑
a∈A

x(Va,k+1) + 2
∑
a∈A

x(Va,k) = 0.

It leads to that ∂ = 0, a contradiction. �

All distinct distance eigenvalues of B(n, k) are obtained in Theorem 4.2. To determine
the multiplicities of these eigenvalues, we need the following result.

Lemma 4.3: The trace ofD(B(n, k))2 is given by

tr(D(B(n, k))2) = 4n(n − 1)
(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
.
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Proof: For A ∈ Vk, by Claim 3 and Lemma 3.1, the diagonal entry of D(B(n, k))2 corre-
sponding to A is given by

d(2)(A,A) =
∑

S∈V(B(n,k))

d(S,A)2 =
∑
S∈Vk

d(S,A)2 +
∑

S∈Vk+1

d(S,A)2

=
k∑

i=0

∑
S∈Vk,A(i)

d(S,A)2 +
k∑

i=0

∑
S∈Vk+1,A(i)

d(S,A)2

=
k∑

i=0

(
k

k − i

)(
n − k
i

)
(2i)2 +

k∑
i=0

(
k

k − i

)(
n − k
i + 1

)
(2i + 1)2

= 4
k∑

i=0
i
(
k
i

)
· i
(
n − k
i

)

+
(
4

k∑
i=0

i
(
k
i

)
· (i + 1)

(
n − k
i + 1

)
+

k∑
i=0

(
k

k − i

)(
n − k
i + 1

))

= 4
k∑

i=0
k
(
k − 1
i − 1

)
· (n − k)

(
n − k − 1
i − 1

)

+
(
4

k∑
i=0

k
(
k − 1
i − 1

)
· (n − k)

(
n − k − 1

i

)
+
(

n
k + 1

))

= 4k(n − k)
k∑

i=0

(
k − 1
k − i

)(
n − k − 1
i − 1

)

+ 4k(n − k)
k∑

i=0

(
k − 1
k − i

)(
n − k − 1

i

)
+
(

n
k + 1

)

= 4k(n − k)
(
n − 2
k − 1

)
+ 4k(n − k)

(
n − 2
k

)
+
(

n
k + 1

)

= 4k(n − k)
(
n − 1
k

)
+
(

n
k + 1

)
.

Similarly, for B ∈ Vk+1, by Claim 4 and Lemma 3.2, the diagonal entry of D(B(n, k))2
corresponding to B is given by

d(2)(B,B) = 4(k + 1)(n − k − 1)
(
n − 1
k

)
+
(
n
k

)
.

Therefore, the trace ofD(B(n, k))2 is given by

tr(D(B(n, k))2) = |Vk|d(2)(A,A) + |Vk+1|d(2)(B,B)

= 4k(n − k)
(
n
k

)(
n − 1
k

)
+
(
n
k

)(
n

k + 1

)
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+ 4(k + 1)(n − k − 1)
(
n − 1
k

)(
n

k + 1

)
+
(
n
k

)(
n

k + 1

)

= 4kn
(
n − 1
k

)2
+ 4n(n − k − 1)

(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)

= 4n(n − 1)
(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
.

It completes the proof. �

Now we are ready to give the distance spectrum of B(n, k).

Theorem 4.4: Let n and k be two positive integers such that n ≥ 2k + 1. Then the distance
spectrum of B(n, k) is given by

SpD(B(n, k)) =
{

θ1(n, k), [0]ζ , θ2(n, k),
[
−2
(
n − 1
k

)]n−1
}

where θ1(n, k), θ2(n, k) = (n−1
k
)
((n − 1) ±

√
(n − 1)2 + n2/(n − k)(k + 1)) and ζ =(n+1

k+1
)− (n + 1).

Proof: It is proved that θ1(n, k), θ2(n, k), 0 and−2
(n−1

k
)
are all distinct distance eigenvalues

of B(n, k) in Theorem 4.2. In what follows, we respectively write θ1 and θ2 for θ1(n, k)
and θ2(n, k) for short. Note that the distance spectral radius θ1 is simple. Assume that the
multiplicities of θ2 and−2

(n−1
k
)
arem1 andm2, respectively. Therefore, Lemma 4.3 implies

that

θ1 + m1θ2 − 2m2

(
n − 1
k

)
= tr(D(B(n, k))) = 0,

θ21 + m1θ
2
2 + 4m2

(
n − 1
k

)2
= tr(D(B(n, k))2)

= 4n(n − 1)
(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
. (3)

It leads to[
2
(
n − 1
k

)
θ2 + θ22

]
m1 = 4n(n − 1)

(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
− θ21 − 2

(
n − 1
k

)
θ1.

(4)
From Equation (1), we have

θ1 + θ2 = 2(n − 1)
(
n − 1
k

)
and θ1θ2 = −

(
n
k

)(
n

k + 1

)
.
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Therefore, we have

θ21 + θ22 + 2
(
n − 1
k

)
(θ1 + θ2) = (θ1 + θ2)

2 − 2θ1θ2 + 2
(
n − 1
k

)
(θ1 + θ2)

= 4(n − 1)2
(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
+ 4(n − 1)

(
n − 1
k

)2

= 4n(n − 1)
(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
.

It follows that

2
(
n − 1
k

)
θ2 + θ22 = 4n(n − 1)

(
n − 1
k

)2
+ 2

(
n
k

)(
n

k + 1

)
− θ21 − 2

(
n − 1
k

)
θ1. (5)

From (4) and (5), we havem1 = 1 and thusm2 = n − 1 due to the first equation of (3) and
θ1 + θ2 = 2(n − 1)

(n−1
k
)
. Moreover, the multiplicity of 0 is ζ = |V(B(n, k))| − 1 − m1 −

m2 = (n
k
)+ ( n

k+1
)− 1 − 1 − (n − 1) = (n+1

k+1
)− (n + 1).

This completes the proof. �

5. Conclusion

In this paper, we give the distance spectrumofB(n, k) by showing that all its distance eigen-
values are contained in a quotient matrix. In fact, if � is graph having (distance) equitable
partitions �1, �2, . . . , �l which share the same quotient matrix Bm×m, then, for a (dis-
tance) eigenvalue of � not contained in those of Bm×m, the corresponding eigenvector x
sums to zero on each cell of�i for 1 ≤ i ≤ l. Thus, we may get l × m functions. By consid-
ering the eigenfunction, we may get some additional functions. If l is large enough, then
the system of functions may have no solution and thus all (distance) eigenvalues of � are
contained in the eigenvalues of B. Applying this idea, one may get the (distance) spectra of
graphs with high symmetry.We will try to obtain a precise condition for a graph admitting
a (distance) partition whose quotient matrix has all eigenvalues of this graph in the future
research.
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