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1. Introduction

In this paper, we only consider connected simple graphs. Let I' = (V, E) be a connected
graph with vertex set V.= {v1,v2,...,v,} and edge set E = {e;, €2, . .., e, }. The distance
between v; and vj, denoted by d(v;, v;) (or d; for short), is defined as the length of a shortest
path between v; and v;. The diameter of I', denoted by d(I"), is the largest distance in T".
The distance matrix of I', denoted by D(I'), is the n x n matrix whose (i, j)-entry is equal
to d;j, for 1 < i,j < n. The distance eigenvalues of I' are the eigenvalues of D(T"). Let 9; >
9y > - -+ > 9 beall distinct eigenvalues of D(I") with multiplicities m,, ma, . . ., m;. By the
Perron-Frobenius theorem (see [1, Theorem 2.2.1]), we have 9; > |9;| and m; = 1. The
multiset of such eigenvalues together with their multiplicities is the distance spectrum of
I', denoted by Sp,(I') = {01, 02, . . ., 3,}. For more details about distance eigenvalues, we
refer the reader to [2-4].

The Boolean lattice BL,, (or hypercube Qy,) is the graph whose vertices are all subsets
of [n] = {1, ..., n} and two subsets are adjacent if their symmetric difference has precisely
one element. The kth layer Ly of BL,, is the family of all k-subsets of [n]. For0 < k <n — 1,
let B(n, k) denote the subgraph of BL,, induced by the layers Ly and Ly . In detail, the graph
B(n, k) has vertex set V(B(n,k)) = {S C [n] | |S| = k or k + 1} and two vertices S; and S,
are adjacent if S; C S, or S, C S;. The distance spectrum of BL, was given by Aalipour
etal. [2], and Koolen et al. [5] proved that BL,, is determined by its distance spectrum, that
is, there is no graph sharing the same distance spectrum with BL, but not isomorphic to
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it. Recently, Mirafzal [6] obtained the adjacency eigenvalues of the line graph of B(n, 1),
and this result was generalized by Huang and Huang [7], who obtained the adjacency
eigenvalues of the line graph of B(n, k) for1 <k <n— 1.

The elementary problem to investigate the distance spectrum of a graph is to calculate
its distance spectrum. However, there are no general strategies to calculate the distance
spectrum of a graph up to now. One may obtain some distance eigenvalues of a graph by
using the knowledge of equitable partition and quotient matrix, which will be introduced
in Section 2. Moreover, Godsil and Royle [8, Theorem 9.4.1] give a condition that any
eigenvalue of a graph is also an eigenvalue of a quotient matrix. Motivated by this idea,
we obtain a quotient matrix of the distance matrix of B(n, k) which contains all distance
eigenvalues of B(n, k) by using a totally different method. We think such a method may be
useful to obtain the distance spectra of some other graphs.

It is known that any connected graph with diameter d has at least d + 1 distinct adja-
cency eigenvalues [9]. However, it is not true for distance eigenvalues. In [10], the authors
proposed the question ‘Are there connected graphs that are not distance regular with diam-
eter d and having less than d + 1 distance eigenvalues?’ This question was answered by
Aalipour et al. [2], who constructed a class of non-regular connected graphs having at most
5 distinct distance eigenvalues with diameter d 41 for any d. In this paper, we show that
B(n, k) has exactly 4 distinct distance eigenvalues with diameter not less than 2k + 1 by
completely determining the distance spectrum of it.

2. Preliminaries

In this part, we introduce the knowledge of the equitable partition of a symmetric real
matrix. The knowledge of equitable partition contains very rich content, and it is a very
powerful tool in spectral graph theory. Here we give a brief description of it and refer the
reader to [1, Section 2.3] or [8, Section 9.3] for details.

Suppose that M is an n x n symmetric real matrix whose rows and columns are indexed
by X = {1,...,n}. Let IT be a partition of X with cells X, ..., Xy,. The matrix M can be
written as

My -+ Mim
M= : :
Mm,l e Mm,m

where M;; is the submatrix of M whose rows and columns are induced by X; and Xj,
respectively, for 1 < i,j < m. Let b;; be the average row sum of M; ;. Then B, = (bij) mxm
is the quotient matrix of M with respect to the partition I1. Especially, if the row sum
of each block M;; is a constant, then the partition is an equitable partition. For a subset
V C{1,2,...,n}, the characteristic vector 5y € R" of V is the vector such that §y (i) = 1
ifi € V and 0 otherwise. The characteristic matrix P with respect to the partition IT is the
n x m matrix whose jth column is the characteristic vector SXJ. of Xj for 1 < j < m, that
is, P = [6x, | 6x, | - - | 8x,,]. Therefore, it is not hard to verify that MP = PB,,. This fact
implies the following result.
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Lemma 2.1 ([8]): Let M be a real symmetric matrix, and let T1 be an equitable partition of
M with quotient matrix By,. Then we have

(i) all eigenvalues of B, are also eigenvalues of M;
(ii) let x be an eigenvector of M corresponding to A, if A is not an eigenvalue of By, then the
summation of x on each cell is 0;
(iii) if y is an eigenvector of B, corresponding to A', then Py is an eigenvector of M
corresponding to A', where P is the characteristic matrix.

Suppose that I is a connected graph of order n. Let D be the distance matrix of I" and
[T: V= V3 U-.- UV, a partition of the vertex set V. Suppose that D;; is the submatrix
of D whose rows and columns are induced by V; and V; for 1 <i,j < m. For u € Vj, the
row sum of Dj; corresponding to u is ZVGVJ‘ d(u, v). Thus, the partition IT is an equitable
partition if, for 1 < i,j < mand u € V;, the value Zvevj
of the choice of u. In this case, we say that I1 is a distance equitable partition of I'. Therefore,
we get the following result by applying Lemma 2.1 to a distance matrix.

d(u, v) is a constant independent

Corollary 2.2: Let I' be a connected graph with distance matrix D and Il a distance
equitable partition of I with quotient matrix By, of D. Then we have

(i) all eigenvalues of By, are distance eigenvalues of I';
(ii) let x be an eigenvector of D(I") corresponding to 9, if d is not an eigenvalue of By, then
the summation of x on each cell of I is 0.

Let G < Aut(I") be a subgroup of the automorphism group of the graph I'. Suppose that
01,0,,..., O are all orbits of V(I") under the action of G. Then Ilg: V(I') = O; U O, U
-+ - U O is a partition of V(I") which is called the orbit partition of I' on G. The following
result confirms that an orbit partition is also a distance equitable partition.

Lemma 2.3 ([11, Lemma 2.1.]): Let I" be a connected graph and G < Aut(I"). If Tlg :
V(') = 01 UO, U --- U Ox is the orbit partition of I with respect to G, then Ilg is also
a distance equitable partition.

3. Structure of B(n, k)

In this section, we first introduce some notations and symbols for B(n, k) and give some
basic structural properties of B(n, k). Next, we present two types of distance equitable
partitions of B(n, k) according to its structure. For any subset A C [n],let A = [n] \ A.

Claim 1: For two positive integers k and n such that 0 <k < n — 1, we have B(n,k) =
B(n,n—1—k).

Proof: Let ¢: V(B(n,k)) - V(B(n,n—1—k)) be the map defined by ¢(S) = S for
any S € V(B(n,k)). Clearly, ¢ is a bijection. Moreover, if S; ~ S in B(n, k) then S; C
Sy or §; C S;. The former case leads to ¢(S;) C ¢(S1), and the latter case leads to
©(81) C ¢(S2), and thus ¢(S1) ~ ¢(S2) in B(n,n — 1 — k). Conversely, if (S1) ~ ¢(Sz) in
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B(n,n — 1 — k), then ¢(S1) C ¢(S;) or ¢(S;) C ¢(S1). The former case leads to S; C
S1, and the latter case leads to S; C S;, and thus S; ~ S; in B(n, k). Therefore, ¢ is an
isomorphism between B(n, k) and B(n,n — 1 — k). |

If k> (n—1)/2 in the graph B(n, k), then, by taking k' =n — 1 — k, the graph
B(n, k') = B(n, k) satisfies k' < (n — 1)/2. Thus, we may always assume that k < (n —
1)/2,i.e. n > 2k + 1, for B(n, k) throughout this paper.

Let Vi ={S C [n] | |S| = k}and Vi1 = {S C [n] | |S| = k + 1} be the collections of k-
subsets and the k + 1-subsets of [n], respectively. It is clear that |Vi| = (Z), Viks1]| = (kil)
and V(B(n,k)) = Vi U Vi is a partition. Note that a bipartite graph I with partition
V1 U Vyis called (ry, r2)-semi-regular if each vertex in Vi has degree r; and each vertex in
V3 has degree 7.

Claim 2: The graph B(n, k) is bipartite with two parts Vi and Viy,. Furthermore, B(n, k) is
k+ 1-regular ifn = 2k+ 1 and is (n — k, k + 1)-semi-regular if n > 2k + 1.

Proof: By the definition, Vi and Vi1 are two independent sets of B(, k), and thus B(#, k)
is bipartite. Moreover, each vertex S = {s;,52,...,sk} € Vi has n—k neighbours {S U {s} |
s € S} in Vjy. Similarly, each vertex of Vi1 has k+ 1 neighbours in Vj. It means that
B(n, k) is k+ 1-regular if n = 2k+ 1 and (n — k, k + 1)-semi-regular if n > 2k + 1. |

For A € Vyand 0 < i <k, define
Via() ={Se Vi | ISNA| =k—i},
Vir1,4(0) = {S € Vi1 [ SN A| =k —i}.

Since n > 2k + 1, we have Vi 4 (i), Vk41,4 (1) # ¥ for 0 < i < k. Particularly, Vi 4(0) =
{A}. By simple observations and calculations, we have the following claim.

Claim 3: The cardinalities of Vi 4 (i) and Vii1,4 (i) are

k —k k —k
|vk,A<i>|=(k_i>("i ) and |vk+1,A<i>|=<k_i)(’Z +1>

for 0 < i < k. Moreover, Vy = Uf:o Via(i) and Vg = ULO Vit1,4 () forany A € Vi.
In terms of these notations, we have the following result.

Lemma 3.1: Let A € Vi and S € V(B(n,k)). Then, for any 0 <i <k, the distance
d(S,A) = 2iifand only if S € Vi 4(i), and d(S,A) = 2i + 1 if and only if S € Vii1,.4(0).

Proof: Since B(n, k) is bipartite with the partition Vi U Vi and A € Vj, it is easy to see
that d(S, A) is even if and only if S € Vi and d(S, A) is odd if and only if S € Vi, .

It is clear that d(S,A) = Oifand only if S = A € Vi 4(0) = {A}. Moreover, d(S,A) = 1
ifand only if S = A U {x} for some x € Aifand onlyif S € Vi 14(0) ={AU{x} |x € A).
Therefore, the result follows for i = 0. In what follows, we consider the case of i =1 > 1
and assume that the result holds fori < [ — 1.
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First suppose that d(S,A) = 2I. We have S € Vi and there exists §' € V(B(n,k))
such that § ~ Sand d(§',A) = 2] — 1 = 2(I — 1) + 1. By inductive assumption, we have
S" € Vks1.4(I — 1), and thus, we may assume that 8 = {x1, ..., Xk—14 1, Xk—142> - - > Xk+1}>
where x1,..., %141 € A and X142, ..., %41 € A. Since &’ ~ S, we have S C §/, that
is, ="\ {x;} for some 1 <j<k+1.If k=142 <jthen S € Via(l—1) and thus
d(S,A) = 2(I — 1) by inductive assumption, a contradiction. Therefore, we have j < k —
I+ 1 and thus S € Vi 4(]). Conversely, suppose that S € Vj 4(]). Since | > 1, there exists
x € A\ S. Therefore, the vertex S = S U {x} is adjacent to S. Note that S € V1 4(I — 1).
We have d(S,A) <d(S,S) +d(S,A) =1+2(1—1)+1=2L1fd(S,A) = 2I' < 2l then
we have § € Vi 4 (I') by inductive assumption, a contradiction. It follows that d(S, A) = 21.

Next suppose that d(S, A) = 21+ 1. Wehave S € Vj ;| and thus there exists S’ € Vj such
that S’ ~ Sand d(S', A) = 2I. By the arguments of above segment, we have S € V 4(I) and
S =S8\ {xj} for some x; € S. Thus, we may assume that S = {X1 e Xk Xkt 1> - -5 Xk
where x1,...,x¢_; € Aand Xg_j41,. .., X € A. We claim that S € Vi1 4(D),ie. [SNA| =
k — 1. Otherwise, we have x; € A, which leads to S € Vy;14(I — 1) and thus d(S,A) =
2(I — 1) + 1 = 2] — 1 by inductive assumption, a contradiction. Conversely, suppose that
S € Vir14(D).LetS = S\ {x} forsomex € S\ A. Wehave §' ~ Sand S’ € Vi 4(I). There-
fore, d(S,A) < d(S,S') +d(S',A) =21+ 1 by the arguments of the above segment. If
d(S,A) =2I' +1 < 21+ 1, then S € Vii1.4(I') again by inductive assumption, a contra-
diction. It follows that d(S, A) = 2] + 1.

This completes the proof. |

For B € Vi1, let
Vi@ ={SeVi|ISNBl=k+1—i} forl <i<k+1,
Vi ={SeVip | ISNBl=k+1—i} for0<i<k+1.

Since n > 2k + 1, we have V+B(i) V]:r+13(j) #@Pforl <i<k+1and 0<j<k and
V,::_LB(k—i— )=9 if n=2k+1 and V +1B(k—}— 1) £ 0 if n>2k+1. As similar as
Claim 3, we have the following claim.

Claim 4: The cardinalities ofV]:fB(i) and V]:“H)B(i) are

+ any + N —
Vi@ = (k+1—i)< i—1 ) and - Vi, (D1 = (k+1—j>< j )

for 1<i<k+1 and 0<j<k+1 Moreover, Vi = k“ VkB(l) and Viy1 =
Uk+1 V y1.5(0) for any B € Viy1.

As similar to the proof of Lemma 3.1, we get the following result.

Lemma 3.2: Let B € Vi) and S € V(B(n, k)). Then the distance d(S, B) = 2i if and only if
Se VI:FLB(i)for any0 <i<k+1,and d(S,B) =2i— lifand only if S € V;B(i)for any
1<i<k+1

Forany A € Vi and B € V)4, Lemma 3.1 means that the longest path from A to other
vertices of B(n, k) has length 2k + 1, and Lemma 3.2 means that the longest path from B to



6 (& LLUANDQ.HUANG

other vertices of B(n, k) has length 2k 4+ 1if n = 2k + 1 and has length 2k + 2 if n > 2k 4 1.
Therefore, we have the following result.

Corollary 3.3: Let n and k be two positive integers such that n > 2k + 1. The graph B(n, k)
has diameter 2k + 1 if n = 2k + 1 and has diameter 2k + 2 if n > 2k + 1.

Let S, be the symmetric group on the set [n]. For each o € S, let 6: V(B(n, k)) —
V(B(n, k)) be the map defined by 6(S) = {o(s) | s € S} for S € V(B(n,k)) and let S,, =
{6 | 0 € S,}. We get the following result.

Claim 5: Th~e map ¢ € Aut(B(n, k)) and thus S, < Aut(B(n, k)). Moreover, Vi and Vi
are orbits on S,,.

Proof: By the definition, one can easily verify that & € Aut(B(n,k)) and S, <
Aut(B(n, k)). For any two vertices S = {s1,...,st} and §' = {s},...,s.} of V4, by taking
o € Sy such that o(s;) = s; for 1 < i <k, we have 6(S) = §'. Therefore, V is an orbit.
Similarly, Vi1 is also an orbit. [ |

Claim 6: The partition T1: V(B(n,k)) = Vk U Vi1 is a distance equitable partition of
B(n, k) with quotient matrix

Dri — an(n k)  ap(nk)
T=\anmk)  an(nk

where a1 (n, k) = 2k(", D), ana(n k) = 2k(k+1) (k31) 21 ) = 20k + 1)(”;1) -k
and ooy (n, k) = 2(k + D (1)).

Proof: From Claim 5, I is an orbit partition of B(n, k). Therefore, Lemma 2.3 indicates
that IT is a distance equitable partition of B(#n, k). Assume that the quotient matrix is given

by
Drr — ar1(n.k)  ap(n, k)
"= ek anmk)

For any A € V. and B € Vj4, by Claims 3, 4 and Lemmas 3.1 and 3.2, we have

k
a1 (n k) = Z d(s, A) = Z Z d(s, A)

SeVy i=0 SeV (i)
k k

k n—k n—1
2 Z’(k—i)(i) <k)
i=0 SeVi () i=0

k
app(n, k) = Z d(S,A):Z Z d(s, A)

S€Vit1 i=0 SeViy1,4 ()

_Z 3 (21+1)—Z(2i+1)<k1ii)(’:;f)

i=0 SeVi () =
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_ ok n—1 " n
CT\k+1 k+1)

k+1
an(mk)y =Y dS,By =) > dSB),
SeVk i=1 SGV,:YB(i)
k+1 k+1
) . k+1 n—k
_Z Z (21_1)_2(21_ 1)<k+1—i>(i—1>
=1 seVip ) i=1
n—1 n
=2(k+1 —(),
wo(" )= (0)
k+1
an(mk)= Y dSB =) > dSB
S€Vir1 =0 seV | 5
k+1 k+1

. A k+1 n—k—1 _ n—1
=> > Zz_g2z(k+l_i>( , )-2(k+1)<k+1>.l

. 1
=0 seVi, | 50)

By Claim 6, the eigenvalues of Dy, denoted by 6, (1, k) and 6, (n, k), are the roots of the
quadratic equation

—1
f(x) = det(xI — Dr) =x*—2(n-— 1)<n K )x— <Z> <k-7— 1) =0. (1)

By simple calculations, we have

9(nk)9(nk)—(n_l) (n—1)+x (11—1)2—|—n—2 (2)
PBERTARE = & n—kk+1 |

From Corollary 2.2, we get the following result.

Lemma 3.4: Let 01(n, k) and 6, (n, k) be the two roots of Equation (1) given in Equation (2).
Then we have

(i) 01(n, k) and 6,(n, k) are distance eigenvalues of B(n, k);
(ii) if x is an eigenvector of D(B(n, k)) corresponding to X\ different from 0, and 6,, then
2ven XV =3 ey, X(v) = 0.

For givs:n ac[n],letG, = {q € S, | o(a) = a} be the stabilizer of a. Clearly, G, < S,
andthus G, ={06 |0 € G,} < S, < Aut(B(n,~k)). As similar as Claim 5, it is easy to see
that Vo, Vakt1> Vak and Vx4 are orbits on G,, where

Vok={SeVelaeS, Vi1 ={(S€Viy1laces,
Vak={SeVklagS,, Vikr1={S€Vip1lags}
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As similar as Claim 6, we have the following result.

Claim 7: The partition I1, : V(B(n,k)) = Vi U Vg1 U Var U Vik41 is also a distance
equitable partition of B(n, k) with quotient matrix

Dn,

aj(n—1,k—1) ap(n—1k—1) ar(n— Lk)+2(2j) ap(n— l,k)+2(”;2)

_ 0{21(}’[— 1,k— 1) 0122(71— l,k— 1) 0{21(}’[— 1,k)+2(z:?) 0{22(7!— 1,k)+2(”;2)
anm—Lk=1D+2(170)  anm—1Lk—1+2("7) an(n—1,k) ap(n—1,k)
an(n—Lk—1D+2(17)  ann—1k—1+2("7) o (n—1,k) an(n—1,k)

where a;;(-, -) is given in Claim 6.

Proof: Since I, is an orbit partition of B(#, k), Lemma 2.3 means that I, is also a distance
equitable partition of B(n, k). Denote the quotient matrix by

d(Va,ka Va,k) d(Va,k> Va,k-i—l) d(Va,k’ Vﬁ,k) d(Va,k) Vﬁ,k-i-l)
Dy = AVaks+1:Vak)  AWVaksts Varr1)  AWVars1: Var)  dVags1> Vaks1)
“ dVak Vak) dVak Vak+1) dVak Vak) dVak Vaks1)
AVak+1:Vak)  dWVaksts Varr)  dVarsr Var)  dVagsr, Vagsl)
For each A € V_, by Lemma 3.1, we have

k k
dVapVa) = S dsH =" 3 dasaH=> > 2

SEVak i=0 SeV 4(i),aeS i=0 SeVy 4 (i),acs

B k by k—1 n—k 1 n—>2 ~ .
_izo l<k_1_i)( i >_ ( - )(k_l>—0l11(n— Jk — )’

k k
AVap Vo) = ) dSAH =) Y dSAH=) Y @Qi+D

SeVait1 i=0 SeVit1,4(i),aeS i=0 S€Vit1,4(1).a€S

N 1( k—1 <n—k>
_;(IJF ) k—l—i) i+1
ZZ(k—1)<n;2)+<n;1>Zalz(ﬂ—l,k—l),

k k
AV Vap = Y dsA =Y Y dsa=Y Y

SeVax i=0 SeVi 4(i),agS i=0 SeVy 4(i).ageS
_ izl,(k— 1) (n - k) _ 2k<n - 2)
2N k-i)\ k
n—2 n—2
+ 2(](— 1) = 0[11(11 — l,k) + Z(k_ 1),
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k k
dVapVarr) = Y dSA =) Y dSH=) > Qi+

SEV@k.H i=0 Ser+1,A(i),a¢S i=0 SGVk+1’A(1‘),ﬂ¢S

=Xk:(2i+1)(k—l>(n—k>
Py k—i i+1

n—2 n—1 n—2
:2(k—1)<k+1>+3<k+1) :alz(n—l,k)+2<k+1>.

Similarly, other entries of Dry, are obtained by Lemmas 3.1 and 3.2. n
To end up this part, we obtain all distinct eigenvalues of Dyy,,.

Lemma 3.5: Let n and k be two positive integers such that n > 2k + 1. Then we have

(i) the eigenvalues of Dr, are 01(n, k), 62(n,k), 0 and —2(";1), which are distance
eigenvalues of B(n, k);

(ii) ifxis an eigenvector of D(B(n, k)) corresponding to ) different from 61, 60,, 0 or —2(”;1),
then Zveva)k x(v) = Zveva,kﬂ x(v) = Zveva,k x(v) = Zvevﬂﬂ x(v) =0foranya €
[n].

Proof: Let y = (y1,y2)T be an eigenvector of D(IT) corresponding to the eigenvalue
0i(n, k) for some i € {1,2}. Let P be the characteristic matrix of the partition IT. There-
fore, Lemma 2.1(iii) indicates that Py is an eigenvector of D(B(n,k)) corresponding to
0;(n, k). Note that y* = Py € RIVE®I is such that y*(v) = y; if v € Vy and y*(v) = y, if
v € Vk41. Therefore, Zveva‘k y*(v) = (Z:})yl # 0 for any a € [n], and Corollary 2.2(ii)
implies that 6;(n, k) is an eigenvalue of Dpy,. From Claim 7, one can easily verify that
row;(Dn,) 4+ rows(Dn,) = rowz(Dny,) + rows(Dry, ). It follows that 0 is an eigenvalue
of Dry,,. Assume that the remaining eigenvalue of D(I1,) is €. It holds that

O1(n, k) + 62(n,k) + 0+ € =tr(Dpy,) =ann(n— Lk—1) +anh—1,k—1)
+o11(n— l,k) + ap(n — l,k).

By calculations, we have e = —2(";1) and thus all eigenvalues of Dry,, are 6; (1, k), 62(n, k),
0, and —2(";1). Thus, (i) follows.

Assume that x is an eigenvector of D(B(#n, k)) corresponding to A different from 6, 6,,
Oor —2(";1). Forany a € [n], since A is not an eigenvalue of Dry,, Corollary 2.2(iii) means
that x sums to zero on each cell of the partition IT,. Thus, (ii) follows. |

4. Distance spectrum of B(n, k)

In this part, we first obtain all distinct distance eigenvalues of B(n, k) and next determine
the multiplicities of them. Let A be a set and m: A — NT a function. The multiset A™
with underlying set A and multiplicity function m is the collection of all elements of A
and each element a € A occurs m(a) times, that is, A™ = {m(a) x a | a € A} where m(a)
counts the number of occurrences of a. Additionally, we may extend the domain of m by
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defining m(x) = 0 for each x ¢ A. Clearly, a set A can be viewed as a multiset A" with
m(a) = 1 for any a € A. For two multisets A™! and B2, the multi-union of them, denote
by A™ @ B", is the multiset with the underlying set A U B and multiplicity function m,
where m(n) = my(n) + ma(n) for any n € A U B. Particularly, let k * A™ denote multi-
union of k copies of A™. It is clear that j « Vx4 (i) = {j* S| S € Vi, [SNA| = k — i} is the
multiset with multiplicity function m such that m(S) = j for any S € Vi 4 (4). Similarly, the
multiset j % Vi1 4(7) is well-defined. Of course, j may equal i. We get the following result.

Lemma 4.1: Let n and k be two positive integers such that n > 2k + 1.

(1) If AeVy then W isxVial) =W, Vax and W ixVia() =
L-'_-JaeA Va,k‘Fl'

(2) If BeViy then &Jfﬂl ix VT gD = Wpep Vi and U:H'll i* le’B(i) =
Ween VE,k-H'

Proof: Let A™ and 3" denote the multiset L—ij-;l i% Via(i) and (4,4 Vak respectively.
Notice that each S € Vi 4 (i) is distinct, it is clear that A = Ule Viea()) = Vi \ Via(0) =
Vi \ {A}. Also by noticing that any k-element subset of Vi other than A is contained
in (4,24 Vak we have B = Vi \ {A}. If S € Vi \ {A} then S € V4 (i) for some 1 <i <
k. Clearly, S € A only occurs in Vi 4(i) and thus the multiplicity of S in A™! equals

m1(S) = i. Now we may assume that S = {s1,...,Sk—j> Sk—i+1>- - .»Sk} Where sy, ..., sk—; €
A, Sk—it1>-..>Sk € Aandi > 1.Itiseasytoseethat,fora € A\ {s,...,sk_i},S € Boccurs
exactly one time in each V5 and thus m(S) = idueto |A \ {s1,...,sk—i}| = i. Therefore,

we have A™ = 32, that is L—ﬂk 1i% Viea(i) = [H,c4 Vak- Similarly, one can also obtain

that [+ Ul-:1 i% Vip1,4() = [H,e4 Vak+1 and (1) holds.

Let 7 = Uk+1 i V() and LM = 4,5V, It is easy to see that F = V. For
each S € Vy, there exists b € B such that b ¢ S and thus S € VE,k' Therefore, we also
have £ = V. Let Sbe an element of V. Assume that S = {s1, ..., Sk11—i>Skt2—i>--->Sk} €

+ p(i) where sy, ...,sk1 1 € Band sgypj..., 5 € B. Since S does not occur in V]:FB(j)
for any j # i, it holds that m3(S) = i. Note that, for b € B, S € V;; if and only if b €
B\ {s1,...,Sk+1—i}. Therefore, m4(S) = |B\ {s1,...,Sk+1—i}| = i. Thus, F™ = L™, that
is, [4; kH i* V+B(z) = Hyep V- Similarly, one can also obtain that Ukle i% Vk++1 () =
L‘UbeB Vh,k+1 and (2) holds.

Let I' be a graph and x: V(I') — R a real-valued function on V(I'). For a multiset A™
with A € V(I'), denote by x(A™) = )" ,cam x(a) = ), m(a)x(a). Now we are ready to
give one of our main results.

Theorem 4.2: Let n and k be two positive integers such that n > 2k + 1. Then the distinct
distance eigenvalues of B(n, k) are 0)(n, k), 62(n, k), 0 and —2(”;1).

Proof: Suppose to the contrary that B(n, k) has a distance eigenvalue 9 different from
61(n, k), 6,(n, k), 0 and —2(”;1). Let x be an eigenvector of D(B(n,k)) correspond-
ing to d. By Lemma 3.5 (ii), we have x(V,x) = x(V, 44+1) = x(Vax) = x(Vak4+1) = 0 for
any a € [n]. It follows that x(Vx) = x(Vk) +x(Vax) = 0 and x(Vit1) = xVager1) +
x(Vak+1) = 0.
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Note that x # 0. There exists A € Vi such that x(A) # 0 or B € Vi;; such that
x(B) # 0. We only consider the former case since the latter one is similar. Since
D(B(n,k))x = 0x, we have 9x(A) = ZSEV(B(n,k)) d(S, A)x(S). Now we partition the
vertex set V(B(n, k) according to the distance from A. By Lemmas 3.1 and 3.2,
we see that {S € V(B(n,k)) | d(S,A) = 1} = Vir1.4(0), {S € V(B(n,k)) | d(S,A) =2} =
Via(1), {S € V(B(n,k)) | d(S,A) =3} = Vit1,4(1) and, in general, {S € V(B(n, k)) |
d(S, A) = 2i} = Vi 4 (i) and {S € V(B(n,k)) | d(S,A) = 2i+ 1} = Vik14() for 0 <i <
k. Thus, we have

dx(A) = Z d(S, A)x(S) = Zd(S,A)x(S)—i— Z (s, A)x(S)

SeV(B(n,k)) SeVk SVt
= x(Vk+1,4(0)) + 2 - x(Via (1)) + 3 - x(Viey1,4(1))
+oo 42 x(Via()) + Qi+ 1) - x(Vigp1,40) + -+
+ 2k - x(Via (k) + 2k + 1) - x(Viy1,4 (k)
= x(Vk+1,4(0)) + x(Vi41,4(1)) + x(Vi41,4(2)) + - - - + x(Vir1,4 (k)
+ 2(c(Vit1,4(1) + 2x(Vi41,4(2) + - - -
+ix(Vip1,40) + -+ - + kx(Vi1,4 (k)
+2(x(Via(1) +2x(Via(2) + - + ix(Via (D) + - - - + kx(Via (k)

k k k
=x (U vk+1,A(z')> +2x (LJ_rJ i % ka,A(i)) +2x (trj i vk,A(z')> :

i=0 i=1 i=1

Note that Ui'(:o Vit+1,4(3) = Viks1, and Lemma 4.1(1) gives L—ﬂle i% Vig1,4(0) = H,ea
Vak+1 and L—ljle i% Via(i) = 8 ,c4 Vak. Therefore, we have

0x(A) = x(Vp1) + 2x <L—!—J Va,k+1) + 2x (E—J Va,k) = x(Vit1)

acA acA

+2) x(Vags)) +2 ) x(Vag) = 0.

acA acA

It leads to that 8 = 0, a contradiction. [ |

All distinct distance eigenvalues of B(n, k) are obtained in Theorem 4.2. To determine
the multiplicities of these eigenvalues, we need the following result.

Lemma 4.3: The trace of D(B(n, k))? is given by

2y _ _p(" ! ’ " "
tr(D(B(n, k)?) = 4n(n 1>< k ) +2(k)<k+1)'
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Proof: For A € Vi, by Claim 3 and Lemma 3.1, the diagonal entry of D(B(n, k))? corre-
sponding to A is given by

dPA4,A) = Y dSA =) dS A+ D dSA)

SeV(B(n,k)) SeVi SeVit
k k
=Y > dASA+Y D dSA)?
i=0 SV 4 (i) i=0 SeViqp1.4 ()

kN(n—k\ 5 ~f k \(n—k\_
> () e e () (e

(CIORRIGOR R3]

1

k
k—1\(n—k—1
=4k(n—k)z<k_i)<n O )
_k

k—1\(n—k—-1 n
+4k(n_k)§(k—i)< i )+<k+1>
n—2 n—2 n
=4k(n—k)<k_1)+4k(n—k)< r >+<k+l)
n—1 n

Similarly, for B € Vj41, by Claim 4 and Lemma 3.2, the diagonal entry of D(B(n, k))?
corresponding to B is given by

%D@3)=Mk+UM—k—1m?;1>+(D.

Therefore, the trace of D(B(n, k))? is given by

tr(D(B(n, k)% = [Vkld®P (A, A) + |Viy11d® (B, B)

— 4k(n — k)(Z) (n « 1) " (Z) (ki 1)
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+4(k+1)(n—k—1)(n;1><kil)+<Z)(k:_1>

=4kn<n_1>2+4n0r—k——n<n_1)2+2<n)< n )

k k AVES
=4n(n—1)<”_1>2+2<">< " )
k AVES

It completes the proof. |

Now we are ready to give the distance spectrum of B(n, k).

Theorem 4.4: Let n and k be two positive integers such that n > 2k + 1. Then the distance
spectrum of B(n, k) is given by

n—1
Spp(B(n, k) = 1 01(n, k), 01, 62(m ), [‘2(’1 K 1)} }

where 01(n,k),0,(n, k) = (", ) (n— D £/ (n—D? +n2/(n—k)(k+1)) and ¢ =
(F1) = (n+ 1),

Proof: ltisproved that6(n, k),0,(n,k),0and —2 (";1) are all distinct distance eigenvalues
of B(n, k) in Theorem 4.2. In what follows, we respectively write 6; and 6, for 6;(n, k)
and 6, (n, k) for short. Note that the distance spectral radius 6; is simple. Assume that the
multiplicities of 6, and —2(";1) are m and my, respectively. Therefore, Lemma 4.3 implies
that

01 + mi6, — 2my (7’1 -

. 1) — t(D(B(n, K))) = O,

k

("N (M) " (3)

= 4n(n — )( P ) + <k><k—|—1>'

It leads to

2" oy 1 02| my =4 1”_122" " 02 2" e
( K )” | = dntn - )< K ) * <k>(k+1>_ - ( K )1‘

(4)

2
9%+mle§+4mz(” ) = tr(D(B(n, K))?)

From Equation (1), we have

o+ =20— (""" and 616, = (") "
L =L k a 2=\ k1)
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Therefore, we have

5 2 n—1 5 n—1
07 + 65 +2 r 61+ 62) = (01 +62)" — 2616, 42 P 61+ 62)

4 12n—12 2n n 4 ] n—1\°
_(n_)<k>+<k><k+1>+(n_ )<k>
2
=4n(n—1)<n_1> +2<n>( " )
k k/J\k+1

It follows that

DY L VR 1”_122” " 022" Y. ¢
(k)”2‘"(”‘)(k)*(k)(kﬂ)‘l‘(k)l‘ )

From (4) and (5), we have m; = 1 and thus m; = n — 1 due to the first equation of (3) and
01+ 6, =2(n— 1)(";1). Moreover, the multiplicity of 0is ¢ = |V/(B(n,k))| — 1 — m; —
n n n+1
my = (k)+(k+1) —1-1-(n-1D= (k+1)_(”+1)‘
This completes the proof. u

5. Conclusion

In this paper, we give the distance spectrum of B(#, k) by showing that all its distance eigen-
values are contained in a quotient matrix. In fact, if I' is graph having (distance) equitable
partitions ITy, Iy, ..., I1; which share the same quotient matrix By, x, then, for a (dis-
tance) eigenvalue of I' not contained in those of By, xm, the corresponding eigenvector x
sums to zero on each cell of I1; for 1 < i < I. Thus, we may get ] x m functions. By consid-
ering the eigenfunction, we may get some additional functions. If / is large enough, then
the system of functions may have no solution and thus all (distance) eigenvalues of I" are
contained in the eigenvalues of B. Applying this idea, one may get the (distance) spectra of
graphs with high symmetry. We will try to obtain a precise condition for a graph admitting
a (distance) partition whose quotient matrix has all eigenvalues of this graph in the future
research.
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