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ABSTRACT
Let � be an equitable partition of a graph G with k cells. If G has no
equitable partitionwith fewer cells than�, then� is called aminimal
partition of G and G is called a k-equitable graph. It is clear that 1-
equitable graphs are regular graphs. In this paper, we investigate 2-
equitable graphs with four distinct eigenvalues.
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1. Introduction

Throughout this paper, we only consider undirected simple graphs. Let G be a graph on
n vertices with vertex set V = {v1, v2, . . . , vn} and edge set E. The adjacency matrix of
G is A(G) = (aij)n×n where aij = 1 if vi ∼ vj and 0 otherwise. Since A is symmetric, all
eigenvalues of A are real and listed as λ1 ≥ λ2 ≥ · · · ≥ λn. Such eigenvalues are called
the eigenvalues of the graph G. If all distinct eigenvalues of G are λ1 > λ2 > · · · > λs
and the multiplicity of λi is mi, then the collection of all eigenvalues together with their
multiplicities is the spectrum of G, denoted by Sp(G), and we always write Sp(G) =
{[λ1]m1 , [λ2]m2 , . . . , [λs]ms}. For v ∈ V , the neighborhood of v is NG(v) = {u ∈ V | u ∼ v}
and the closed neighbourhood of V is NG[v] = NG(v) ∪ {v}. The degree of v is dG(v) =
|NG(v)|. If it is clear which graph we mean, we delete the subscript G in the notations
like dG(v). For a subset X ⊆ V , the subgraph of G induced by X is denoted by G[X]. The
characteristic vector δX ∈ R

n of X ⊆ V is a vector indexed by the vertices of V such that
δX(v) = 1 if v ∈ X and 0 otherwise. If X = {v}, we always write δv for δ{v}.

As usual, we always writeKn, Pn andKn1,n2,...,nk for the complete graph, the path and the
complete multipartite graph on corresponding vertices. The complement G of a graph G is
the graph with vertex set V(G) = V(G) and uv ∈ E(G) if uv �∈ E(G). The union G ∪ H of
two graphsG andH are the graph with vertex setV(G) ∪ V(H) and edge set E(G) ∪ E(H).
The join G∇H of G and H is the graph obtained from G ∪ H by adding all edges between
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2 L. LU ET AL.

V(G) and V(H). Besides, we always write Im for the unity matrix of orderm, Jm×n the all-
ones matrix of sizem × n and jn the all-ones vector of length n. For a positive integer t, let
e(t)1 , e(t)2 , . . . , e(t)t be the normal basis of R

t , that is, e(t)i is the vector such that e(t)i (j) = 1 if
j = i and 0 otherwise. Denote by e(t)ij = e(t)i − e(t)j for 1 ≤ i, j ≤ t. All other notations and
marks not mentioned here are standard in [1].

Connected graphs with few distinct eigenvalues have aroused a lot of interest in the past
decades. The problem to characterize such graphs was proposed by Doob [2]. It is known
that the connected graphs with two distinct eigenvalues are complete graphs. The con-
nected graphs with three distinct eigenvalues are far from being characterized. In 1965,
Shrikhande and Bhagwandas [3] gave the classical result that a connected regular graph
with three distinct eigenvalues is a strongly regular graph (a strongly regular graph with
parameter (n, r, a, c) is an r-regular graph on n vertices such that |N(u) ∩ N(v)| = a if
u ∼ v and |N(u) ∩ N(v)| = c if u �∼ v). However, there are not many effective methods
to construct strongly regular graphs. Even the existence of a strongly regular graph with
some given parameters is still unknown. Therefore, many mathematicians turn their eyes
to non-regular graphs with three distinct eigenvalues. Particularly, the connected non-
regular graphs with three distinct eigenvalues having −2 as the smallest eigenvalue were
completely determined by Dam [4]. With respect to graphs with four distinct eigenvalues,
there are notmany results. The connected regular bipartite graphs with four distinct eigen-
values are the incidence graphs of symmetric balanced incomplete block designs (SBIBD)
[5]. Recently, Cioabǎ et al. in [6] (resp. [7]) determined the graphs with all but two eigen-
values different from±1 (resp.−2 and 0). Huang andHuang [8] determined the connected
regular graphs with four distinct eigenvalues, in which two of them are simple, and having
−1 as an eigenvalue. For more results on graphs with few distinct eigenvalues, we refer the
reader to [9–18]. Motivated by the fact that there are few results about non-regular graphs
with four distinct eigenvalues, we will investigate this problem.

In this paper, we give the definitions of k-equitable graphs and good partitions. We will
see that 1-equitable graphs are regular graphs. Therefore, this notion can be regarded as
a generalization of regular graphs. We investigate the 2-equitable graphs with three and
four distinct eigenvalues, respectively. In detail, we completely determine the 2-equitable
graphs with three distinct eigenvalues when they have a good partition. We also investi-
gate the structure of 2-equitable graphs with four distinct eigenvalues when they have a
good partition. Furthermore, we completely determine the 2-equitable graphs with four
distinct eigenvalues under some spectral conditions. Lastly, we propose some conjectures
to investigate in the future.

2. Definitions and observations

In this part, we first introduce some definitions and next give the spectra of some special
graphs.

Let G be a connected graph with vertex set V = {v1, v2, . . . , vn} and adjacency matrix
A(G). A partition �: V = V1 ∪ V2 ∪ · · · ∪ Vm is called an equitable partition of G if, for
1 ≤ i, j ≤ m and vi ∈ Vi, the number |N(vi) ∩ Vj| = bij is a constant only depending on i
and j but not the choice of vi. The matrix B� = (bi,j)m×m is called the quotient matrix ofG
with respect to �. The matrix P = [δV1 | δV2 | · · · | δVm] is the characteristic matrix with
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respect to �, where δVi is the characteristic vector of Vi. It is easy to verify that A(G)P =
PB�. From this equation, the following result follows.

Theorem 2.1 ([19, Page 198]): Let G be a connected graph and � an equitable partition of
G with quotient matrix B� and characteristic matrix P. Then the eigenvalues of B� are also
eigenvalues of A(G). Furthermore, A(G) has the following two kinds of eigenvectors:

(i) the eigenvectors in the column space of P, and the corresponding eigenvalues coincide
with the eigenvalues of B�;

(ii) the eigenvectors orthogonal to the columns of P, i.e. those eigenvectors sum to zero on
each cell of �.

Denote by ��(G) the set of eigenvalues with an eigenvector of type (i) and denote by
��(G) the set of eigenvalues with an eigenvector of type (ii) of Theorem 2.1. Therefore,
the set of distinct eigenvalues of G is the union of ��(G) and ��(G). Note that the set
��(G) ∩ ��(G) may be not empty. If ��(G) ∩ ��(G) = ∅, then (G,�) is called a good
pair.

An equitable partition� is calledminimal ifG has no equitable partitionwith fewer cells
than �. If G has a minimal equitable partition with k cells, then G is called a k-equitable
graph. If � is a minimal partition of G such that (G,�) is a good pair, then � is called a
good partition.

It is clear that a connected graph G is 1-equitable if and only if it is regular. The only
minimal partition of a regular graphG is�:V(G) = V(G). It is known that the 1-equitable
graphs with exactly three distinct eigenvalues are strongly regular graphs. In what follows,
we would like to investigate the 2-equitable graphs with few distinct eigenvalues. By notic-
ing that the connected graphs with exactly two distinct eigenvalues are complete graphs,
we see that a connected 2-equitable graph has at least three distinct eigenvalues. We first
characterize the 2-equitable graphs with exactly three distinct eigenvalues.

Theorem 2.2: Assume that G is a connected 2-equitable graph with a good partition �:
V = V1 ∪ V2. Then the graph G has exactly three distinct eigenvalues if and only if G is
complete bipartite.

Proof: The sufficiency is clear and we prove the necessity in what follows. Let V = {x ∈
R

|G| | xTδV1 = xTδV2 = 0}. Since G has three distinct eigenvalues and (G,�) is a good
pair, there is exactly one eigenvalue λ ∈ ��(G). Therefore, the eigenspace E(λ) = V .
Suppose that there exist u, v ∈ Vi such that u ∼ v. Since δu − δv ∈ V = E(λ), we have
λ(δu − δv) = A(δu − δv). By considering the u-th entries of both sides of this equation,
we have λ = −1. Assume that ��(G) = {θ1, θ2} with θ1 > θ2. We have θ1 > θ2 > −1 or
θ1 > −1 > θ2. Note that the complete graph is the only connected graph with the smallest
eigenvalue being −1 and is the only graph with just one non-negative eigenvalue, which
is only feasible for the complete graph. However, G cannot be the complete graph since its
spectrum does not satisfy inequalities θ1 > θ2 > −1 or θ1 > −1 > θ2. Thus, there is no
edge in Vi for 1 ≤ i ≤ 2, and thus G is bipartite. Note that the diameter of G is 2 due to the
fact that it has three distinct eigenvalues. Thus G is complete bipartite. �
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Let G = (V1,V2) be a bipartite graph and let t1, t2 be two positive integers. Denote by
G[t1, t2] the graph obtained from G by replacing each vertex v ∈ Vi with a copy of Kti
labelled as Kv

ti for 1 ≤ i ≤ 2, and adding all edges between Ku
t1 and Kv

t2 if u ∼ v in G. A
bipartite graphH = (V1,V2) is called a (k1, k2)-semi-regular bipartite graph if each vertex
inVi has degree ki for 1 ≤ i ≤ 2. It is clear that�:V(H) = V1 ∪ V2 is an equitable partition
ofH (may be notminimal). LetV ′

1 = ∪u∈V1V(Ku
t1) andV

′
2 = ∪v∈V2V(Kv

t2). Obviously, the
partition �′: V(H[t1, t2]) = V ′

1 ∪ V ′
2 is also an equitable partition of H[t1, t2]. The parti-

tion � is called the normal partition of H and the partition �′ is called the corresponding
normal partition of H[t1, t2].

Lemma 2.1: Let H = (V1,V2) be a (k1, k2)-semi-regular bipartite graph with |V1| = m1
and |V2| = m2. For two positive integers t1 and t2, the spectrum of H[t1, t2] is{
[−1]m1(t1−1)+m2(t2−1), [t1 − 1]η(BT), [t2 − 1]η(B),

t1 + t2 − 2 ±
√

(t1 − t2)2 + 4λ2t1t2
2

}

where λ are all positive eigenvalues of H, η(B) and η(BT) are the nullities of B and BT , and
B is the incidence matrix from V1 to V2.

Proof: By assumption, A(H) = ( 0 B
BT 0

)
. Therefore, the adjacency matrix of G = H[t1, t2]

is given by

A(G) =
(

Im1 ⊗ (Jt1×t1 − It1) B ⊗ Jt1×t2
BT ⊗ Jt2×t1 Im2 ⊗ (Jt2×t2 − It2)

)
,

where ⊗ denotes the Kronecker product of two matrices. For 1 ≤ i ≤ m1, 2 ≤ j ≤ t1, 1 ≤
k ≤ m2 and 2 ≤ l ≤ t2, let xij =

(
e(m1)

i ⊗e(t1)

1j
0

)
and ykl =

( 0
e(m2)

k ⊗e(t2)

1l

)
. It is easy to verify

that A(G)xij = −xij and A(G)ykl = −ykl. Note that the vectors xij and ykl are all linear
independent. It means that−1 is an eigenvalue ofGwith multiplicity at leastm1(t1 − 1) +
m2(t2 − 1).

It is known that the multiplicity of 0 as an eigenvalue of H is equal to η(B) + η(BT)

where η(B) and η(BT) are the nullities of B and BT . Assume that x1, x2, . . . , xs and
y1, y2, . . . , yt are the basis of the nullspaces of BT and B respectively. Therefore, the vec-
tors

( x1
0

)
,
( x2
0

)
, . . . ,

( xs
0
)
and

( 0
y1

)
,
( 0
y2

)
, . . . ,

( 0
yt

)
form a set of orthogonal eigenvectors

ofH corresponding to 0. Let Xi =
(
xi⊗jt1
0⊗jt2

)
and Yj =

(
0⊗jt1
yj⊗jt2

)
for 1 ≤ i ≤ s and 1 ≤ j ≤ t.

It is easy to verify that A(G)Xi = (t1 − 1)Xi and A(G)Yj = (t2 − 1)Yj. Therefore, t1 − 1
and t2 − 1 are two eigenvalues ofGwith multiplicities at least η(BT) and η(B) respectively.

Assume that
( 0 B
BT 0

) ( x
y
) = λ

( x
y
)

where λ > 0. Let ε+ = ((t2 − t1)
+

√
(t1 − t2)2 + 4λ2t1t2)/2λt2 and ε− = ((t2 − t1) −

√
(t1 − t2)2 + 4λ2t1t2)/2λt2. Let

X+ =
( x⊗jt1

ε+y⊗jt2

)
and X− =

( x⊗jt1
ε−y⊗jt2

)
. One can verify that A(G)X+ = (t1 + t2 − 2

+
√

(t1 − t2)2 + 4λ2t1t2)/2X+ and A(G)X− = (t1 + t2 − 2 −
√

(t1 − t2)2 + 4λ2t1t2)
/2X−. If H has p positive eigenvalues, then G has 2p such eigenvalues. Note
that 2p + η(B) + η(Bt) = m1 + m2. Hence, 2p + η(B) + η(BT) + m1(t1 − 1) + m2(t2 −
1) = m1t1 + m2t2. It means that we get all eigenvalues of G.

This completes the proof. �
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Remark 2.1: From the proof of Lemma 2.1, if the eigenvalue λ > 0 belongs to ��(H)

then (t1 + t2 − 2 ±
√

(t1 − t2)2 + 4λ2t1t2)/2 belong to �
�′(G), where � is the normal

partition of H and �′ is the corresponding normal partition of G.

Recall that a balanced incomplete block design, denoted by BIBD, consists of v elements
and b subsets of these elements called blocks such that each element is contained in r blocks,
each block contains k elements, and each pair of elements is simultaneously contained in
λ blocks (see [20]). The integers (v, b, r, k, λ) are called the parameters of the design. In
the case r = k (and then v = b) the design is called symmetric with parameters (v, k, λ),
denoted by (v, k, λ)-SBIBD.

The incidence graph of a BIBD is the bipartite graph on b+ v vertices (correspond to the
blocks and elements of the design) with two vertices adjacent if and only if one corresponds
to a block and the other corresponds to an element contained in that block. By simple
observations, we get the following result.

Lemma 2.2: Let H = (V1,V2) be a (k1, k2)-semi-regular bipartite graph with |V1| = m1
and |V2| = m2. If there exist c1 and c2 such that |N(ui) ∩ N(vi)| = ci for any ui, vi ∈ Vi and
1 ≤ i ≤ 2, then m1 = m2 = m, k1 = k2 = k, c1 = c2 = c and H is the incidence graph of a
(m, k, c)-SBIBD.

Proof: Assume that B is the incidence matrix from V1 to V2. By the assumption, we have
BBT = k1I + c1(J − I) and BTB = k2I + c2(J − I). Note that BBT and BTB share the same
non-zero eigenvalues. We have k1 + c1(m1 − 1) = k2 + c2(m2 − 1) and k1 − c1 = k2 −
c2. Also noticing that k1m1 = k2m2, we obtain thatm1 = m2 = m, k1 = k2 = k and c1 =
c2 = c. The result follows. �

Remark 2.2: It is clear that the spectrum of the incidence graph H = (V1,V2) of a
(m, k, c)-SBIBD is{±√

k + c(m − 1), [±√
k − c]m−1}. Let�:V(H) = V1 ∪ V2 be the nor-

mal partition of H. It is clear that ±√
k + c(m − 1) ∈ ��(H) and ±√

k − c ∈ ��(H),
and thus � is a good partition. Combining Lemma 2.1 and Remark 2.1, the spectrum of
G = H[t1, t2] is given by

{
[−1]m(t1+t2−2),

t1 + t2 − 2 ±
√

(t1 − t2)2 + 4(k + c(m − 1))t1t2
2

,

[
t1 + t2 − 2 ±

√
(t1 − t2)2 + 4(k − c)t1t2

2

]m−1
⎫⎬
⎭ .

Let �′ be the corresponding normal partition of G. It is clear that

��′(G) =
{
t1 + t2 − 2 ±

√
(t1 − t2)2 + 4(k + c(m − 1))t1t2

2

}

and all other eigenvalues belong to �
�′(G), and thus �′ is also a good partition.
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3. Main results

Let Gn
2 be the set of all connected 2-equitable graphs on n vertices and Hn

2 the subset of
2-equitable graphs possessing a good partition. Define

Hn
2(4) = {G ∈ Hn

2 | |��(G)| + |��(G)| = 4 for a good partition �},
Hn

2(4, 0) = {G ∈ Hn
2(4) | 0 ∈ ��(G) for a good partition �},

Hn
2(4,−1) = {G ∈ Hn

2(4) | −1 ∈ ��(G) for a good partition �},
Hn

2(4,−1, 0) = {G ∈ Hn
2(4) | ��(G) = {−1, 0} for a good partition �},

Hn
2(4,−) = {G ∈ Hn

2(4) | −1, 0 �∈ ��(G) for a good partition �}.

It is clear that Hn
2(4) = Hn

2(4, 0) ∪ Hn
2(4,−1) ∪ Hn

2(4,−) and Hn
2(4, 0) ∩ Hn

2(4,−1) =
Hn

2(4,−1, 0). Our goal is to characterize Hn
2(4). In this part, we completely determine

Hn
2(4, 0) andHn

2(4,−1), and give a structural description for all graphs inHn
2(4).

Lemma 3.1: If G ∈ Hn
2(4, 0) is a graph with good partition �: V = V1 ∪ V2, then N(u) =

N(v) for any u, v ∈ Vi with u �∼ v and 1 ≤ i ≤ 2.

Proof: Assume that ��(G) = {θ1, θ2} and ��(G) = {0, λ}. Let V = {x ∈ R
n | xTδV1 =

xTδV2 = 0} where n = |G|. Obviously, V = E(0) ⊕ E(λ). For any pair of vertices u, v ∈
Vi with u �∼ v, since δu − δv ∈ V = E(0) ⊕ E(λ), we may assume that δu − δv = ax + by
where x ∈ E(0) \ {0} and y ∈ E(λ) \ {0}. If b �= 0 then A(δu − δv) = A(ax + by) = bλy.
Therefore, α = A(δu − δv) ∈ E(λ) \ {0}. Note that α(i) = 1 if i ∈ N(u) \ N(v), α(i) = −1
if i ∈ N(v) \ N(u) andα(i) = 0 otherwise. By successively considering the u-th entries and
the v-th entries of both sides of Aα = λα, we have |N(u) \ N(v)| = |N(v) \ N(u)| = 0.
It leads to that N(u) = N(v). Therefore, α = A(δu − δv) = 0, a contradiction. Thus, we
have b = 0 and δu − δv ∈ E(0) \ {0}. It means thatA(δu − δv) = 0, which leads toN(u) =
N(v). �

Lemma3.2: If G ∈ Hn
2(4,−1) is a graphwith good partition�: V = V1 ∪ V2, thenN[u] =

N[v] for any u, v ∈ Vi with u ∼ v and 1 ≤ i ≤ 2.

Proof: Assume that��(G) = {θ1, θ2} and��(G) = {−1, λ}. LetV = {x ∈ R
n | xTδV1 =

xTδV2 = 0} where n = |G|. Obviously, V = E(−1) ⊕ E(λ). For any pair of vertices u, v ∈
Viwithu ∼ v, since δu − δv ∈ V = E(−1) ⊕ E(λ), wemay assume that δu − δv = ax + by
where x ∈ E(−1) \ {0} and y ∈ E(λ) \ {0}. If b �= 0 then (A + I)(δu − δv) = (A + I)(ax +
by) = b(λ + 1)y. Therefore, α = (A + I)(δu − δv) ∈ E(λ) \ {0}. Note that α(i) = 1 if i ∈
N[u] \ N[v], α(i) = −1 if i ∈ N[v] \ N[u] and α(i) = 0 otherwise. By successively con-
sidering the u-th entries and the v-th entries of both sides of Aα = λα, we have |N[u] \
N[v]| = |N[v \ N[u]| = 0. It leads to thatN[u] = N[v]. Therefore, α = A(δu − δv) = 0, a
contradiction. Thus, we have b = 0 and δu − δv ∈ E(−1) \ {0}. Itmeans thatA(δu − δv) =
−(δu − δv) which leads to N[u] = N[v]. �

From Lemmas 3.1 and 3.2, we get the following result.
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Lemma 3.3: The graph set

Hn
2(4,−1, 0) = {Ks∇Kt | s, t ≥ 2}.

Proof: Since ��(G) = {0,−1}, Lemmas 3.1 and 3.2 indicate that each pair of vertices in
the same cell share the same neighbourhood. Therefore, G[Vi] is either a complete graph
or an empty graph and G = G[V1]∇G[V2]. Clearly, G[V1] and G[V2] cannot be both
complete or both empty. Therefore, G = Ks∇Kt and s, t ≥ 2. Note that Ks∇Kt = H[s, 1]
where H = K1,t . Since Sp(H) = {±√

t, [0]t−1}, η(BT) = 0 and η(B) = t − 1 where B =
jTt , Lemma 2.1 implies that

Sp(Ks∇Kt) =
{(

s − 1 ±
√
4st + (s − 1)2

)
/2, [0]t−1, [−1]s−1

}
.

The result follows. �

Lemma3.4: Let G ∈ Hn
2(4, 0) be a graphwith good partition�: V = V1 ∪ V2. If��(G) =

{0, λ}withλ �= −1 thenG = H[t1, t2]whereH is the incidence graph of a SBIBDand t1 �= t2.

Proof: Since 0 ∈ ��(G), Lemma 3.1 indicates that each pair of non-adjacent vertices
share the same neighbourhood. It means that G[Vi] contains no induced K2 ∪ K1 for
1 ≤ i ≤ 2. Therefore,G[Vi] are complete multipartite graphs. Moreover, they are balanced
complete multipartite graphs due to that G[Vi] are regular. Assume G[V1] = s1Kt1 and
G[V2] = s2Kt2 .

Assume that ��(G) = {0, λ} with λ �= −1. Let V = {x ∈ R
n | xTδV1 = xTδV2 = 0}

where n = |G|. Obviously, V = E(0) ⊕ E(λ). For any pair of vertices u, v ∈ Vi with u ∼ v,
since δu − δv ∈ V = E(0) ⊕ E(λ), assume that δu − δv = ax + by where x ∈ E(0) \ {0}
and y ∈ E(λ) \ {0}. If b = 0 then δu − δv ∈ E(0). Therefore, by considering the u-th
entries of both sides of A(δu − δv) = 0, we have −1 = 0, a contradiction. Thus, b �= 0
and α = A(δu − δv) = A(ax + by) = bλy ∈ E(λ). Note that α(i) = 1 if i ∈ N(u) \ N(v),
α(i) = −1 if i ∈ N(v) \ N(u) and α(i) = 0 otherwise. By considering the u-th entries and
the v-th entries of Aα = λα, we have |N(u) \ N(v)| = |N(v) \ N(u)| = −λ. Therefore,
there are totally n − di + λ vertices adjacent to neither u nor v, where di is the valency of
vertices in Vi. Moreover, since G[Vi] is complete multipartite, there is no w ∈ Vi such that
w �∼ u andw �∼ v. Therefore, all such n − di + λ vertices belong toVj where j ∈ {1, 2} \ {i}.

Now we considerG. By arguments above,G[Vi] = siKti . Assume thatU1,U2, . . . ,Usi ⊂
V1 and U ′

1,U
′
2, . . . ,U

′
s2 ∈ V2 such that G[Uk] = Kt1 and G[U ′

l ] = Kt2 for 1 ≤ k ≤ s1 and
1 ≤ l ≤ s2. Since for any two vertices u, v ∈ Uk, they are not adjacent in G. Lemma 3.1
indicates that NG(u) = NG(v) and thus NG[u] = NG[v]. It leads to that each vertex in Uk
is adjacent to every vertex inU ′

l if there is an edge betweenUk andU ′
l . Thus, G = H[t1, t2]

whereH = (U,V) is a semi-regular bipartite graph. For any u1, u2 ∈ U, they can be viewed
as two vertices in, say,U1 andU2, and they are adjacent inG. Therefore, there are n − d1 +
λ vertices in V2 adjacent to neither u1 nor u2. It means that |NG(u1) ∩ NG(u2)| = n −
d1 + λ. Therefore, |NH(u1) ∩ NH(u2)| = (n − d1 + λ)/t2 = c1. Similarly, for any v1, v2 ∈
V , we have |NH(v1) ∩ NH(v2)| = (n − d2 + λ)/t1 = c2. Lemma 2.2 implies that H is the
incidence graph of a SBIBD.

This completes the proof. �
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We present the following result without proving since the proof is very similar to that
of Lemma 3.4.

Lemma 3.5: Let G ∈ Hn
2(4,−1) be a graph with good partition �: V = V1 ∪ V2. If

��(G) = {−1, λ}with λ �= 0 then G = H[t1, t2],where H is the incidence graph of a SBIBD
and t1 �= t2.

Combining Lemmas 3.3, 3.4 and Remark 2.2, we get the following result.

Theorem 3.1: The graph set

Hn
2(4, 0) = {Ks∇Kt ,H[t1, t2] | s, t ≥ 2,H = GSB(m, k, c) with k − c = 1 and t1 �= t2},

where GSB(m, k, c) denotes the incidence graph of an (m, k, c)-SBIBD.

Proof: Assume that G ∈ Hn
2(4, 0). Lemmas 3.3 and 3.4 indicate that G = Ks∇Kt or

H[t1, t2]. It suffices to show that G = H[t1, t2] ∈ Hn
2(4, 0) when H = GSB(m, k, c) with

k−c = 1 and t1 �= t2. Assume that � is the corresponding normal partition of G =
H[t1, t2], which is also an equitable partition of G. Note that A(G) = J − I − A(H[t1, t2])
and xTjn = 0 for any x ∈ EG(λ) and λ ∈ ��(G). Therefore, each eigenvalue λ ∈ ��(G)

leads to an eigenvalue −1 − λ of G. Thus, from Remark 2.2, the spectrum of G is⎧⎨
⎩θ1, θ2,

[
−(t1 + t2) ±

√
(t1 − t2)2 + 4(k − c)t1t2

2

]m−1

, [0]m(t1+t2−2)

⎫⎬
⎭ ,

where��(G) = {θ1, θ2} and other eigenvalues belong to��(G). It means that� is a good
partition. Furthermore, from k−c = 1, we have (−(t1 + t2) +

√
(t1 − t2)2 + 4(k − c)t1t2)

/2 = 0. Thus, G = H[t1, t2] ∈ Hn
2(4, 0). �

Similarly, from Lemmas 3.3, 3.5 and Remark 2.2, we get the following result. We omit
the proof since it is very similar to the proof of Theorem 3.1.

Theorem 3.2: The graph set

Hn
2(4,−1) = {Ks∇Kt ,H[t1, t2] | s, t ≥ 2,H = GSB(m, k, c) with k − c = 1 and t1 �= t2},

where GSB(m, k, c) denotes the incidence graph of a (m, k, c)-SBIBD.

It remains to consider the graph setHn
2(4,−).

Theorem 3.3: If G ∈ Hn
2(4,−) is a graph with good partition �: V = V1 ∪ V2, then,

for any u, v ∈ Vi, |N(u) ∩ N(v)| = γi when u ∼ v and |N(u) ∩ N(v)| = μi when u �∼ v.
Furthermore,γ1 − γ2 = μ1 − μ2 = d1 − d2 where di is the valency of the vertices in Vi.

Proof: Assume that ��(G) = {λ1, λ2} with λ1, λ2 �∈ {0,−1}. Let V = {x ∈ R
n | xTδV1 =

xTδV2 = 0}. It is clear that δu − δv ∈ V for any pair of vertices u, v ∈ Vi and 1 ≤ i ≤ 2.
For any u, v ∈ Vi with u �∼ v. Assume that δu − δv = ax + by where x ∈ E(λ1) and

y ∈ E(λ2). If one of a and b equals to 0, say a = 0, then δu − δv ∈ E(λ2). By considering the
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u-th entries and the v-th entries of A(δu − δv) = λ2(δu − δv), we have N(u) = N(v) and
thus λ2 = 0, a contradiction. Thus, a, b �= 0 and we may assume that δu − δv = x + y.
From the two equations δu − δv = x + y and A(δu − δv) = A(x + y) = λ1x + λ2y, we
have

x(i) + y(i) =
⎧⎨
⎩

1, i = u
−1, i = v
0, otherwise

and λ1x(i) + λ2y(i) =
⎧⎨
⎩

1, i ∈ N(u) \ N(v)
−1, i ∈ N(v) \ N(u)
0, otherwise

.

It leads to that

x(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ2

λ1 − λ2
, i = u

λ2

λ1 − λ2
, i = v

1
λ1 − λ2

, i = N(u) \ N(v)
−1

λ1 − λ2
, i = N(v) \ N(u)

0, otherwise

and y(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1

λ1 − λ2
, i = u

−λ1

λ1 − λ2
, i = v

−1
λ1 − λ2

, i = N(u) \ N(v)
1

λ1 − λ2
, i = N(v) \ N(u)

0, otherwise

.

By successively considering the u-th entries and the v-th entries of both sides ofAx = λ1x,
we have |N(u) \ N(v)| = |N(v) \ N(u)| = −λ1λ2. Note that d(u) = d(v) = di. We have
|N(u) ∩ N(v)| = di + λ1λ2.

Similarly, for any u, v ∈ Vi with u ∼ v, we have |N(u) ∩ N(v)| = di + (λ1 + 1)(λ2 + 1).
This completes the proof. �

Let G be a graph with an equitable partition �: V1 ∪ V2 such that |Vi| =
ni and each vertex in G[Vi] has valency di. For 1 ≤ i ≤ 2 and any pair of ver-
tices u, v ∈ Vi, if |N(u) ∩ N(v)| = γi for u ∼ v and |N(u) ∩ N(v)| = μi for u �∼ v,
then G is called (n1, n2; d1, d2; γ1, γ2;μ1,μ2)-semi-strongly regular. Theorem 3.3 indi-
cates that, if G ∈ Hn

2(4,−) with a good partition � such that �� = {λ1, λ2} then
G is (n1, n2; d1, d2; d1 + (λ1 + 1)(λ2 + 1), d2 + (λ1 + 1)(λ2 + 1); d1 + λ1λ2, d2 + λ1λ2)-
semi-strongly regular. Note that all graphs in Hn

2(4, 0) and Hn
2(4,−1) are also semi-

strongly regular. We present the following result.

Theorem 3.4: Let G be a 2-equitable graph with good partition �: V = V1 ∪ V2. If G has
exactly four distinct eigenvalues then it is semi-strongly regular.

From Theorem 3.4, we can easily get the following corollary.

Corollary 3.1: Let G be a 2-equitable graph with a good partition�: V = V1 ∪ V2. Assume
that |V1| = 1. Then G has exactly four distinct eigenvalues if and only if G = K1∇H where
H is a strongly regular graph with parameter different from the form (r3 + 2r2, r2 + r, r, r).

Proof: It is clear that G = K1∇H for some H. Theorem 3.4 means that G is semi-strongly
regular, which implies that H is strongly regular. Note that, if the parameter of H is of the
form (r3 + 2r2, r2 + r, r, r), thenG has three distinct eigenvalue [18, Lemma 4.1]. It follows
the result. �
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4. Conclusion

In this paper, we introduce the definition of k-equitable graphs and investigate the 2-
equitable graphs with three and four distinct eigenvalue. However, this definition relies
on the so-called minimal equitable partition of a graph. Therefore, it is crucial to study the
uniqueness of the minimal partition. Let �: V(G) = V1 ∪ V2 and �′: V(G) = V ′

1 ∪ V ′
2

be two equitable partitions of the graph G. If there is an automorphism σ of G such that
σ(V1) = V ′

1 (or σ(V1) = V ′
2) and σ(V2) = V ′

2 (resp. σ(V2) = V ′
1), then � and �′ are

isomorphic.

Conjecture 4.1: If G is a 2-equitable graph then the minimal equitable partition of G is
unique up to isomorphism.

This conjecture may be solved by investigating the structure of the graph.
Note that all our result are obtained under the condition that a graph has a good

partition. It is believable that almost all graphs have a good partition.

Conjecture 4.2: Almost all 2-equitable graphs have a good partition, that is, |Hn
2 |/|Gn

2 | →
1 along with n → ∞.

We do not get any clue to solve this conjecture.
From Theorem 3.4, a graph G ∈ Hn

2(4) must be a semi-strongly regular graph. Assume
that �: V(G) = V1 ∪ V2 is a good partition of G and the adjacency matrix of G is A =( X B
BT Y

)
where B is the incidence matrix from V1 to V2. If A′ = ( 0 B

BT 0
)
is the incidence

graph of a BIBD, then, for u, v ∈ Vi and j = {1, 2} \ {i}, |(N(u) ∩ Vj) ∩ (N(v) ∩ Vj)| is a
constant depending on whether u and v are adjacent or not. It means thatG[V1] andG[V2]
are strongly regular. Thus, onemay construct graphs inHn

2(4,−) from two strongly regular
graphs H1 and H2 by adding edges between them such that the deletion of all edges in Hi
leads to the incidence graph of a BIBD.
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