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Abstract. The prime graph�.G/ of a finite group G is a graph whose vertex set is the set
of prime factors of the degrees of all irreducible complex characters ofG, and two distinct
primes p and q are joined by an edge if the product pq divides some character degree
of G. In 2014, Tong-Viet [H. P. Tong-Viet, Finite groups whose prime graphs are regular,
J. Algebra 397 (2014), 18–31] proposed the following conjecture. Let G be a group and
let k � 5 be odd. If the prime graph �.G/ is k-regular, then �.G/ is a complete graph of
order k C 1. In this paper, we show that if the prime graph �.G/ of a finite nonsolvable
group G is 5-regular, then �.G/ is isomorphic to the complete graph K6 or possibly the
graph depicted in the first figure below. Moreover, if G is an almost simple group, then
�.G/ is isomorphic to the complete graph K6.

1 Introduction

All groups considered in this paper are finite. The letter G always denotes a finite
group. For an integer n, we write �.n/ for the set of all prime divisors of n. The
order of G is denoted by jGj, and we write �.G/ instead of �.jGj/ for the set of
all prime divisors of jGj. Let Gn denote the direct product of n copies of G. We
denote by .m; n/ the greatest common divisor of integers m and n. We refer to
Atlas [4] for the notation of finite nonabelian simple groups. A group G is said to
be an almost simple group with socle S if there exists a nonabelian simple group
S such that S E G � Aut.S/.

All graphs considered in this paper are finite, simple and undirected. The degree
of a vertex v in a simple undirected graph �, denoted by deg.v/, is the number
of neighbors of v in �. In a graph, a vertex is said to be a complete vertex if it is
adjacent to all the other vertices. A graph is said to be a complete graph if every
vertex is complete, and a complete graph of order n is denoted by Kn. A graph
is called Kn-free if it has no subgraph isomorphic to Kn. Furthermore, a graph is
called k-regular if every vertex has degree k for some nonnegative integer k. The
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clique number !.�/ of a graph � is the maximum size of a subset of V.�/, the
vertex set of �, inducing a complete subgraph.

All characters considered in this paper are complex characters. Let Irr.G/ be the
set of all irreducible complex characters of G, and cd.G/ the set of all irreducible
complex character degrees of G, that is, cd.G/ D ¹�.1/ W � 2 Irr.G/º. We write
�.G/ to denote the set of all primes which divide some character degree of G, that
is, �.G/ D ¹p W p is a prime and p j a for some a 2 cd.G/º. If � is a character
of G, then we write Irr.�/ for the set of all irreducible constituents of � in G
and cd.�/ D ¹�.1/ W � 2 Irr.�/º. If N is a normal subgroup of G and � 2 Irr.N /,
then the inertia group of � in G is denoted by IG.�/. Given a finite group G,
the degree set cd.G/ of its complex irreducible characters encodes a great deal of
structural information about the group G. For example, the well-known result due
to Thompson [9, Corollary 12.2] says that if a prime p divides every nonlinear
character degree of a group G, then G has a normal p-complement. According to
[9, Corollary 12.6 and Theorem 12.15], we deduce that if the number of degrees
regardless of multiplicity of irreducible characters of G is at most 3, then G is
solvable. In other words, if jcd.G/j � 3, then G is solvable.

The character-prime graph (prime graph for short) �.G/ corresponding to
a group G is a simple undirected graph whose vertex set is �.G/, and there is
an edge between two distinct vertices p and q if and only if the product pq divides
some character degree of G. This graph was first introduced by Manz, Staszewski
and Willems [14] and has been studied extensively since then. Note that if N is
a normal subgroup of G, then �.G=N/ and �.N/ are subgraphs of �.G/. The
study of prime graphs related to character degrees has its own interest. We will
study the following problem.

Problem 1. Which graphs can occur as the prime graphs of finite groups?

This is one of the attractive topics in the character theory of finite groups. For
example, Manz, Staszewski and Willems [14] proved that �.G/ has at most three
connected components. For finite solvable group, one of the most remarkable re-
sults is due to Pálfy [20]. In that paper, Pálfy proved that, for any solvable groupG
and choice of three distinct primes in �.G/, there exists an irreducible character
of G with degree divisible by at least two of those primes. Unfortunately, this is
generally not true for finite nonsolvable groups, e.g., cd.A5/ D ¹1; 3; 4; 5º. Later,
Moretó and Tiep [18] showed that, for an arbitrary finite group G and choice of
four distinct primes in �.G/, Pálfy’s conclusion holds, and this also generalized the
conclusion in [14]. The two results are very useful in determining which graphs
can occur as the prime graphs of finite solvable and nonsolvable groups, respec-
tively. For example, the graph with four vertices and no edges cannot occur as the
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prime graph of a finite group. The prime graph �.G/ has at most two connected
components ifG is solvable; furthermore, if�.G/ has exactly two connected com-
ponents, then each connected component is complete. Zhang [31] characterized
the finite solvable groups with nonconnected prime graphs. Later on, Lewis [11]
completely classified the finite solvable groups whose prime graphs have exactly
two connected components. On the other hand, Huppert [7] classified all possible
simple graphs with at most four vertices which can occur as the prime graph of
some finite solvable group except possibly a path with four vertices. Zhang [30]
proved that a path with four vertices cannot occur as the prime graph of a finite
solvable group. Lewis and White [13] proved that the same conclusion holds for
finite nonsolvable groups. In [24–26], White determined the prime graphs of all
finite nonabelian simple groups of Lie type, and he summarized the prime graphs
of sporadic simple groups and alternating groups in [27]. We will see that prime
graphs of many finite nonabelian simple groups are complete. It seems that the
prime graphs of finite groups contain many edges. An interesting special case of
Problem 1 is to determine which regular graphs can occur as the prime graph of
a finite group. In 2014, Tong-Viet [23] proved that the prime graph �.G/ of a fi-
nite group G is 3-regular if and only if it is a complete graph with four vertices,
that is, K4. In that paper, Tong-Viet proposed the following conjecture.

Conjecture 1. Let G be a group and k � 2 an integer. Suppose that the prime
graph �.G/ is k-regular. Then

(1) if k � 5 is odd, then �.G/ is a complete graph of order k C 1;

(2) if k � 4 is even, then �.G/ is either a complete graph of order k C 1 or a k-
regular graph of order k C 2.

Zuccari [19] showed that if the prime graph �.G/ of a finite solvable group G
is a noncomplete regular graph with j�.G/j D n, then �.G/ is .n � 2/-regular.
In particular, this answered Tong-Viet’s conjecture when G is a solvable group.
Sayanjali, Akhlaghi and Khosravi [21] proved that �.G/ is k-regular for some
integer k if and only if k D 0 or �.G/ is a regular bipartite graph, and in par-
ticular, if k ¤ j�.G/j � 1, then j�.G/j is even. This also provides some evidence
for Tong-Viet’s conjecture. However, the conjecture has not been proved for finite
nonsolvable groups.

In this paper, we only deal with finite nonsolvable groups. In fact, we obtain the
following result.

Theorem 1.1. Let G be a nonsolvable group. If the prime graph �.G/ of G is 5-
regular, then�.G/ is isomorphic toK6 or possibly the graph depicted in Figure 1
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(see Section 4). Moreover, ifG is an almost simple group, then�.G/ is isomorphic
to K6.

Theorem 1.1 provides some support for Conjecture 1 when k D 5. The graph
depicted in Figure 1 is possible because it does not occur as the prime graph�.G/
of any almost simple groupG, but we have no way to rule it out, nor have we been
able to construct a nonsolvable group G whose prime graph is isomorphic to it.
It is easy to obtain a finite nonsolvable group whose prime graph is isomorphic
to K6; for example, see [27, Sections 2–5].

Question 1.2. Decide whether or not the graph depicted in Figure 1 can occur as
the prime graph of a finite nonsolvable group. If it is possible, what can we say
about those finite nonsolvable groups?

All further unexplained notation and terminology are standard, and we refer the
readers to [3, 9], if necessary.

2 Preliminaries

In this section, for the sake of convenience, we will prove a lemma and state some
known results from the literature which will be used in the remainder of this article.

Lemma 2.1 (see [23, Corollary 2.5]). Let G be a group with prime graph �.G/.
Suppose that the maximal degree of �.G/ is d � 3 and �.G/ is KdC1-free. Then
j�.G/j � 3d , and if G is solvable, then j�.G/j � 2d . In particular, if �.G/ is
connected k-regular for some k � 3 which is not KkC1, then j�.G/j � 3k, and if
G is solvable, then j�.G/j � 2k.

Lemma 2.2 (see [3, Corollary 1.2]). In any graph, the number of vertices of odd
degree is even.

Lemma 2.3 ([1, Theorem A]). Let G be a finite group. Then the following conclu-
sions hold:

(a) if !.�.G// � 5, then j�.G/j � 2!.�.G//C 1;

(b) if !.�.G// � 5, then j�.G/j � 3!.�.G// � 4.

Lemma 2.4 (see [9, Corollary 11.29]). Let N be a normal subgroup of a group G
and � 2 Irr.G/. If � is an irreducible constituent of �N , then �.1/=�.1/ j jG W N j.
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Lemma 2.5 (see [22, Lemma 4.2]). LetN be a normal subgroup of a groupG such
that G=N Š S , where S is a nonabelian simple group. If � 2 Irr.N /, then either
�.1/=�.1/ is divisible by two distinct primes in �.G=N/ for some � 2 Irr.�G/ or
� extends to �0 2 Irr.G/ and G=N Š A5 or L2.8/.

Lemma 2.6 (Gallagher’s Theorem; see [9, Corollary 6.17]). Let N be a normal
subgroup of a group G. If � 2 Irr.N / can extend to �0 2 Irr.G/, then the charac-
ters ˇ�0 for ˇ 2 Irr.G=N/ are irreducible, distinct for distinct ˇ and are all of the
irreducible constituents of �G .

Remark 2.7. Under the hypotheses of Lemma 2.5, from Lemmas 2.5 and 2.6,
a useful consequence is that if � 2 Irr.N / with p j �.1/ and p − jG=N j, then ei-
ther p is adjacent to at least two distinct primes in �.G=N/, or each prime in
�.�.1// is adjacent to each prime in �.G=N/ and G=N Š A5 or L2.8/.

Lemma 2.8. Let G be a group and N a normal subgroup of G. Then

�.G/ n �.G=N/ D �.N / n �.G=N/:

Proof. Let p 2 �.G/ n �.G=N/. Then there exists a nonlinear irreducible char-
acter � of G such that p j �.1/. Let � be an irreducible constituent of �N . By
Lemma 2.4, we have that �.1/=�.1/ j jG=N j. Since .p; jG=N j/ D 1, we deduce
that p j �.1/, so �.G/ n �.G=N/ � �.N / n �.G=N/. Clearly,

�.N / n �.G=N/ � �.G/ n �.G=N/:

The proof is complete.

Lemma 2.9 (see [2, Lemma 2.3]). Let S be a nonabelian simple group and G an
almost simple group with S E G � Aut.S/. Suppose that p and q are primes such
that q lies in �.S/, whereas p lies in �.G/ n �.S/. If p and q are not adjacent in
�.G/, then S is a simple group of Lie type in characteristic q.

Lemma 2.10 (see [2, Lemma 2.4]). Let S be a nonabelian simple group and G an
almost simple group with S E G � Aut.S/. If p and q are distinct prime divisors
of jGj both coprime to jS j, then p and q are adjacent in �.G/.

Lemma 2.11 (see [2, Lemma 2.5]). Let S be a nonabelian simple group. If the
prime graph�.S/ isK5-free, then S is isomorphic to one of the following groups:

(1) M11, M12, J1 and J2;

(2) An with 5 � n � 10;

(3) L2.q/ with q D pf and j�.q ˙ 1/j � 4, where p is a prime;
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(4) L3.q/ with j�.S/j � 5;

(5) U3.q/ with j�.S/j � 5;

(6) Sz.q/ with q D 22nC1 and j�.S/j � 5;

(7) the remaining simple groups of Lie type with order divisible by at most four
primes.

Lemma 2.12 (Pálfy’s Condition; see [20, Theorem]). Let G be a solvable group
and … a subset of �.G/ with j…j D 3. Then there exists an irreducible character
of G with degree divisible by at least two primes from ….

3 Almost simple groups

Itô–Michler’s Theorem ([9, Theorem 6.15] and [16, Theorem 5.4]), a fundamental
theorem on character degrees, says that the prime p does not divide every non-
linear character degree of a group G if and only if G has normal abelian Sylow
p-subgroups. In particular, �.G/ D �.G/ for any almost simple group G since
G has no nontrivial normal abelian Sylow subgroups. This fact will be used fre-
quently without any further reference.

In this section, we complete the proof of the second assertion in Theorem 1.1
independently. We will break the proof into several lemmas.

Theorem 3.1. Let G be an almost simple group. If the prime graph �.G/ of G is
5-regular, then �.G/ is isomorphic to K6.

Proof. If j�.G/j D 6, then we are done. Now suppose that j�.G/j > 6. By [23,
Lemma 2.6], it is obvious that �.G/ is K6-free. Let S be the socle of G. Since
S E G, we have that �.S/ is a subgraph of �.G/, so �.S/ is K6-free. Then S is
isomorphic to one of the groups listed in Lemma 3.2. It follows from Lemmas 3.3–
3.9 that �.G/ cannot be 5-regular, a contradiction. The proof is complete.

We first prove the following lemma, which may be useful in other purposes as
well. In the proof of Lemma 3.2, we need to consider the number of distinct primes
of the orders of finite nonabelian simple groups. Finite nonabelian simple groups
with orders divisible by at most four primes are classified in [8]. Finite nonabelian
simple groups with orders divisible by five or six primes are classified in [10].

Lemma 3.2. Let S be a nonabelian simple group. If the prime graph �.S/ is K6-
free, then S is isomorphic to one of the following groups:

(1) J1, J2, J3, M11, M12, M22, M23, HS, He and McL;

(2) An for n 2 ¹5; 6; 7; 8; 9; 10; 11; 12º;
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(3) L4.q/ for q 2 ¹3; 4; 5; 7º, L5.2/, L5.3/, L6.2/, O7.3/,
S4.q/ for q 2 ¹3; 4; 5; 7; 9º, S6.2/, S6.3/, S8.2/ Š O9.2/,
U4.q/ for q 2 ¹3; 4; 5; 7; 9º, U5.2/, U5.3/, U6.2/, OC8 .2/, O�8 .2/,
OC8 .3/,

2F4.2/0, G2.q/ for q 2 ¹3; 4; 5; 7; 9º, 3D4.2/, 3D4.3/;

(4) Sz.q/, where q D 22nC1 � 8 and j�..q � 1/.q2 C 1//j � 5;

(5) O5.q/, where q D pf , p a prime and j�.q4 � 1/j D 4;

(6) R.q/, where q D 32nC1, j�.q2 � 1/j D 3 and j�.q2 � q C 1/j D 1;

(7) L2.q/, where q D pf , p a prime and j�.q ˙ 1/j � 5;

(8) L3.q/, where q D pf , p a prime and j�.q2 � 1/.q3 � 1/j � 4 or
j�.q2 � 1/.q3 � 1/j D 5; in the latter case, if q is odd, then q � 1 is
divisible by a prime other than 2 or 3;

(9) U3.q/, where q D pf , p a prime and j�.q2 � 1/.q3 C 1/j � 4 or
j�.q2 � 1/.q3 C 1/j D 5; in the latter case, q C 1 is divisible by a prime
other than 2 or 3.

Proof. If 3 � j�.S/j � 5, then �.S/ is K6-free since �.S/ D �.S/.

� If j�.S/j D 3, then S is isomorphic to one of the following groups: A5, A6,
S4.3/ Š U4.2/, L2.7/, L2.8/, U3.3/, L3.3/ and L2.17/ by [8, Table 1].
These groups appear somewhere in the conclusion of the lemma.

� If j�.S/j D 4, then S is isomorphic to one of the following groups: J2, An
for n 2 ¹7; 8; 9; 10º, L3.q/ for q 2 ¹4; 5; 7; 8; 17º, U3.q/ for q 2 ¹4; 5; 7; 8; 9º,
U4.3/, S4.q/ for q 2 ¹4; 5; 7; 9º, S6.2/ Š O7.2/, OC8 .2/, M11, M12, U5.2/,
L4.3/, 2F4.2/0, G2.3/, 3D4.2/, Sz.8/, Sz.32/ and L2.q/ for j�.q2 � 1/j D 3
by [8, Theorem I]. These groups appear somewhere in the conclusion
of the lemma.

� If j�.S/j D 5, then S is isomorphic to one of the following groups: A11,
A12, M22, J3, HS, He, McL, L4.q/ for q 2 ¹4; 5; 7º, L5.2/, L5.3/, L6.2/,
O7.3/, S6.3/, S8.2/ Š O9.2/, U4.q/ for q 2 ¹4; 5; 7; 9º, U5.3/, U6.2/, OC8 .3/,
O�8 .2/,

3D4.3/, G2.q/ for q 2 ¹4; 5; 7; 9º, L2.q/ for j�.q2 � 1/j D 4, L3.q/
for j�.q2 � 1/.q3 � 1/j D 4, U3.q/ for j�.q2 � 1/.q3 C 1/j D 4, O5.q/
for j�.q4 � 1/j D 4, Sz.22nC1/ for j�..22nC1 � 1/.24nC2 C 1//j D 4 and
R.32nC1/, where j�.34nC2 � 1/j D 3 and j�.34nC2 � 32nC1 C 1/j D 1
by [10, Theorem A]. These groups appear somewhere in the conclusion
of the lemma.

� If j�.S/j D 6, by [10, Theorem B] and [27, Sections 2–5], S is isomor-
phic to one of the following groups: M23, J1, L2.q/ for j�.q2 � 1/j D 5,
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L3.q/ for j�.q2 � 1/.q3 � 1/j D 5 and if q is odd, then q � 1 is divis-
ible by a prime other than 2 or 3, U3.q/ for j�.q2 � 1/.q3 C 1/j D 5
and q C 1 is divisible by a prime other than 2 or 3, and Sz.22nC1/
for j�..22nC1 � 1/.24nC2 C 1//j D 5. These groups appear somewhere
in the conclusion of the lemma.

� If j�.S/j � 7, by [27, Sections 2–5], we have that S is isomorphic to L2.q/
for j�.q ˙ 1/j � 5. These groups appear somewhere in the conclusion
of the lemma.

The proof is complete.

We will assume in Lemmas 3.3–3.9 that S is a nonabelian simple group and G
an almost simple group with S E G � Aut.S/.

Lemma 3.3. If S is isomorphic to one of the groups listed in Lemma 3.2 (1)–(3),
then �.G/ cannot be 5-regular.

Proof. In cases (1)–(3) of Lemma 3.2, the order of the outer automorphism group
of S is one of the integers in ¹1; 2; 3; 4; 6; 8; 24º by Atlas [4] or [29]. We have
�.G/ D �.G/ D �.S/ since 6 j jS j. We know that j�.S/j � 5 except J1 and M23.
By Atlas [4], jOut.J1/j D jOut.M23/j D 1, j�.J1/j D j�.M23/j D 6 and both of
their prime graphs are not 5-regular. The proof is complete.

Lemma 3.4. If S is isomorphic to one of the groups listed in Lemma 3.2 (4), then
�.G/ cannot be 5-regular.

Proof. The only outer automorphism of Sz.q/ is the field automorphism. Let
r D jG W S j. Then �.G/ D ¹2º [ �.r.q � 1/.q2 C 1//. By [17, Theorem 6.5], the
subgraph corresponding to �.r.q � 1/.q2 C 1// is complete, and 2 is adjacent to
precisely those primes dividing q � 1. Therefore, �.G/ cannot be 5-regular. The
proof is complete.

Lemma 3.5. If S is isomorphic to one of the groups listed in Lemma 3.2 (5), then
either �.G/ is isomorphic to K6 or �.G/ cannot be 5-regular.

Proof. By [27, Theorem 5.7], the subgraph corresponding to �.p.q4 � 1// is
complete. Let r D jG W S j. By Lemmas 2.9 and 2.10, the subgraph correspond-
ing to �.r.q4 � 1// is complete. If j�.pr.q4 � 1//j D 5, then �.G/ cannot be 5-
regular. If j�.pr.q4 � 1//j D 6, then either �.G/ is isomorphic to K6 or K6 � e,
where e is an edge ofK6. If j�.pr.q4 � 1//j � 7, then�.G/ cannot be 5-regular.
The proof is complete.
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Lemma 3.6. If S is isomorphic to one of the groups listed in Lemma 3.2 (6), then
either �.G/ is isomorphic to K6 or �.G/ cannot be 5-regular.

Proof. This is achieved by similar arguments to those in the proof of Lemma 3.5
since the subgraph corresponding to �.3.q3 C 1/.q � 1// is complete by [27, The-
orem 4.2].

Lemma 3.7. If S is isomorphic to one of the groups listed in Lemma 3.2 (7), then
either �.G/ is isomorphic to K6 or �.G/ cannot be 5-regular.

Proof. Suppose that �.G/ is 5-regular and let � D �.G/ n �.S/. We claim that
j�.G/j � 11. If � ¤ ;, then j�..q � 1/.q C 1//j � 5 and j�.G/ n �.S/j � 5 by
Lemmas 2.9 and 2.10, and so j�.G/j � 11. If � D ;, clearly j�.G/j � 11. The
claim holds. By Lemma 2.2, we obtain that j�.G/j 2 ¹6; 8; 10º. If j�.G/j D 6,
then we are done. From now on, we assume that j�.G/j 2 ¹8; 10º. If � ¤ ;, then
there is no way to guarantee that �.G/ is 5-regular by Lemmas 2.9 and 2.10,
a contradiction. So we may assume that �.G/ D �.S/.

Case 1: S Š L2.2f / and j�.2f ˙ 1/j � 5. Let jG W S j D r D 2am, where a � 0
andm is odd. Ifm ¤ 1, then by [28, Theorem A], we have thatm.2f ˙ 1/ divides
some degree in cd.G/, and so every prime in �.m/ has degree greater than or equal
to 6, a contradiction. From now on, we assume thatm D 1. If a D 0, then G D S ,
and so �.G/ cannot be 5-regular by [27, Theorem 5.2], a contradiction. Hence
we have that jG W S j D 2a with a � 1. If f � 2 .mod 4/ andG D Aut.S/ are not
both true, then by [28, Theorem A], we know that 2.2f ˙ 1/ divides some degree
in cd.G/, and so 2 is adjacent to all primes in �.G/ n ¹2º, a contradiction. So we
may suppose that f � 2 .mod 4/ and G D Aut.S/. If a ¤ 1, then by [28, Theo-
rem A], we deduce that 2.2f ˙ 1/ divides some degree in cd.G/, and so 2 is adja-
cent to all primes in �.G/ n ¹2º, a contradiction. If a D 1, then S Š L2.4/ Š A5
and G Š S5, and thereby j�.G/j … ¹8; 10º, a contradiction.

Case 2: S Š L2.q/, where q D pf , p an odd prime and j�.q ˙ 1/j � 5. In this
case, by [27, Theorem 5.2], 2 is adjacent to all primes in �..q � 1/.q C 1// n ¹2º
and so deg.2/ � 6, a contradiction.

The proof is complete.

Lemma 3.8. If S is isomorphic to one of the groups listed in Lemma 3.2 (8), then
either �.G/ is isomorphic to K6 or �.G/ cannot be 5-regular.

Proof. Suppose that �.G/ is 5-regular. By Lemmas 2.9 and 2.10, we deduce that
j�.G/j � 7. It follows from Lemma 2.2 that j�.G/j D 6, as desired. The proof is
complete.
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Lemma 3.9. If S is isomorphic to one of the groups listed in Lemma 3.2 (9), then
either �.G/ is isomorphic to K6 or �.G/ cannot be 5-regular.

Proof. This is achieved by similar arguments to those in the proof of Lemma 3.8.

4 Proof of Theorem 1.1

In this section, we complete the proof of the first assertion in Theorem 1.1. We
will break the proof into several lemmas. We mainly use Clifford Theory and Gal-
lagher’s Extension Theorem; one may refer to [9, Chapter 6]. We will prove the
graph depicted in Figure 2 cannot occur as the prime graph of a finite nonsolvable
group.

Lemma 4.1. If the prime graph �.G/ of a group G is a 5-regular graph with
j�.G/j > 6, then �.G/ is isomorphic to one of the graphs depicted in Figures 1
and 2.

Proof. By [23, Lemma 2.6], we have that �.G/ is connected 5-regular, and so
�.G/ is K6-free. By Lemmas 2.1 and 2.2, we have that j�.G/j 2 ¹8; 10; 12; 14º.
Write �.G/ D ¹piºniD1, where n D j�.G/j.

Case 1:�.G/ is a 5-regular graph of order 8. By Lemma 2.3, we obtain that�.G/
must contain a complete subgraph K4 with vertex set, say ¹p1; p2; p3; p4º. Each
prime in ¹piº8iD5 is adjacent to at least two distinct primes in ¹piº4iD1 since �.G/
is a 5-regular graph.

Subcase 1.1: Suppose that some prime pj in ¹piº8iD5, say p5, is adjacent to all
primes in ¹p1; p2; p3; p4º. Now deg.pi / D 4 for i 2 ¹1; 2; 3; 4º. There is no way
to guarantee that every prime in ¹p6; p7; p8º is adjacent to at least two distinct
primes in ¹piº4iD1. Hence this subcase cannot happen.

Subcase 1.2: Suppose that some pj in ¹piº8iD5, say p5, is adjacent to three distinct
primes in ¹piº4iD1, say p1, p2 and p3. Now deg.pi / D 4 for i 2 ¹1; 2; 3º. Again,
there is no way to guarantee that every prime in ¹p6; p7; p8º is adjacent to at least
two distinct vertices in ¹piº4iD1. Hence this subcase cannot happen.

Subcase 1.3: Suppose that some pj in ¹piº8iD5, say p5, is adjacent to two distinct
vertices in ¹piº4iD1, say p1 and p2. In fact, in this subcase, each prime in ¹piº8iD5
is adjacent to exactly two distinct vertices in ¹piº4iD1, and ¹piº8iD5 induces a com-
plete subgraphK4. Only two graphs (Figures 1 and 2) satisfy the conditions, up to
isomorphism.
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Figure 1. 5-regular graph of order 8 with 4 K4’s

p1
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p5

p6

p7

p8

Figure 2. 5-regular graph of order 8 with 2 K4’s

Case 2:�.G/ is a 5-regular graph of order 10. By Lemma 2.3, we have that�.G/
must contain a complete subgraph K5 with vertex set, say ¹p1; p2; p3; p4; p5º.
Each prime in ¹piº10iD6 is adjacent to at least one prime in ¹piº5iD1 since �.G/ is
a 5-regular graph. Only one graph (Figure 3) satisfies the conditions, up to isomor-
phism. This is in contradiction to [5, Theorem 3.1].

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

Figure 3. 5-regular graph of order 10 with 2 K5’s
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Case 3: �.G/ is a 5-regular graph of order 12 or 14. By Lemma 2.3, we know
that �.G/ must contain a complete subgraph K6, a contradiction.

The proof is now complete.

Theorem 4.2. Let G be a nonsolvable group. If the prime graph �.G/ is isomor-
phic to the graph depicted in Figure 2, then such a G does not exist.

Proof. This follows directly from Hypothesis 4.5, Remark 4.6, Corollary 4.11,
Lemmas 4.12, 4.14 and 4.16.

Lemma 4.3. Let G be a nonsolvable group. If the prime graph �.G/ is 5-regular
with j�.G/j > 6, then every nonsolvable chief factor of G is simple.

Proof. By hypotheses and Lemma 4.1, we obtain that �.G/ is isomorphic to one
of the graphs depicted in Figures 1 and 2, and so �.G/ is K5-free. If M=N
is a nonsolvable chief factor of G, then M=N Š Sk for some nonabelian sim-
ple group S and some integer k � 1. Let C=N D CG=N .M=N/. Then C E G

and G=C has the unique minimal normal subgroup MC=C which is isomorphic
to M=N .

We claim that k D 1. Assume by contradiction that k � 2. Since G=C has
no nontrivial normal abelian Sylow subgroups, by Itô–Michler’s Theorem, we
have that �.G=C/ D �.G=C/ and thus j�.G=C/j D j�.G=C/j � 3. By [12, Main
Theorem], we know that �.G=C/ is complete, and thus

j�.G=C/j D j�.G=C/j � 4

since �.G=C/ is K5-free. By Lemma 2.8, we have that

� WD �.G/ n �.G=C/ � �.C /:

Thus there exists � 2 Irr.C / such that r j �.1/, where r 2 �. Let L be a normal
subgroup of MC such that L=C Š S . Write

�.G=C/ D ¹piº
n
iD1; where n D j�.G=C/j:

We prove the lemma case by case.
Case 1: n D 3. Then j�j D 5. Let�D ¹xiº5iD1 and xi 2� with xi j �i .1/, where
�i 2 Irr.C /. By Lemma 2.5, either �.1/=�i .1/ is divisible by two distinct primes
in �.L=C/ for some � 2 Irr.�Li / or �i extends to .�i /0 2 Irr.L/. If the former
case holds, then xi is adjacent to at least two distinct primes in �.L=C/. If the
latter case holds, then xi is adjacent to all primes in �.L=C/. Therefore, xi is
adjacent to at least two distinct primes in �.L=C/. Hence deg.pi / � 6 for some
i 2 ¹1; 2; 3º, a contradiction.
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Case 2: n D 4. Since �.G/ is isomorphic to one of the graphs depicted in Fig-
ures 1 and 2, we have that all primes in � must induce a complete subgraph K4.
Assume without loss of generality that � D ¹piº8iD5 (the letters here correspond
to the letters in Figures 1 and 2). In both cases, there exists  2 Irr.G/ such that
p6p7 j  .1/. Let ' be an irreducible constituent of  C . By Lemma 2.4, we obtain
that  .1/='.1/ j jG W C j. Since .p6p7; jG W C j/ D 1, we have that p6p7 j '.1/.
By Lemma 2.5, either �.1/='.1/ is divisible by two distinct primes in �.L=C/
for some � 2 Irr.'L/, or ' extends to '0 2 Irr.L/. If the former case holds, then
�.L/ would contain a complete subgraph K4 with vertex set that contains p6, p7
and two of primes in ¹piº4iD1, and so does�.G/, a contradiction. If the latter case
holds, then p6 is adjacent to all primes in �.L=C/ � ¹piº4iD1, which is impossible
since j�.L=C/j � 3.

The claim holds, and so the proof is complete.

Lemma 4.4. Let G be a group and �.G/ isomorphic to the graph depicted in
Figure 2. If N is the solvable radical of G, and M=N is a chief factor of G, then
G=N is almost simple with socle M=N .

Proof. Since N is the solvable radical of G, we deduce that M=N is nonsolv-
able. It follows from Lemma 4.3 that M=N Š S , where S is a nonabelian sim-
ple group. Let C=N D CG=N .M=N/. Then G=C is almost simple with socle
MC=C ŠM=N .

It suffices to show that C D N . Assume by contradiction that N ˆ C . Let
L=N be a minimal normal subgroup of G=N such that L � C . By Lemma 4.3
again, we obtain that L=N Š T , where T is a nonabelian simple group. Note that
ML=N DM=N � L=N . We have that every prime in� WD �.M=N/ \ �.L=N/
is adjacent to all primes in ƒ WD �.M=N/ [ �.L=N/. In particular, 2 is adjacent
to all primes in ƒ. Therefore, jƒj � 6. We claim that j�.M=N/j � 4. Assume by
contradiction that j�.M=N/j D 3. By [8, Table 1] and Atlas [4], we deduce that
�.G=C/ D �.MC=C/ D �.M=N/. It follows from Lemma 2.8 that j�.C /j � 5.
By [18, Main Theorem], there exist at least two edges in �.C /. By Lemma 2.5, we
deduce that �.MC/ has a subgraph isomorphic to one of the graphs depicted in
Figure 4. This is a contradiction since �.MC/ is a subgraph of �.G/. Hence the
claim holds, and so 4 � jƒj � 6. We prove the lemma one by one.

Case 1: jƒj D 6. From the structure of the graph depicted in Figure 2, any six
vertices chosen in the graph contain at most one complete vertex. This forces
j�j D 1. Since j�.M=N/j � 4 and j�.L=N/j � 3, we have that j�.M=N/j D 4
and j�.L=N/j D 3. By [8, Theorem I], we obtain thatM=N is isomorphic to Sz.8/
or Sz.32/. By [27, Theorem 4.1], we deduce thatƒ has at least four complete ver-
tices, a contradiction.
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(a) (b)

(c) (d)

Figure 4. Some impossible subgraphs of �.MC/

Case 2: jƒj D 5. From the structure of the graph depicted in Figure 2, any five
vertices chosen in the graph contain at most two complete vertices. This forces
j�j � 2. Since j�.M=N/j � 4 and j�.L=N/j � 3, we obtain that

j�j D 2; j�.M=N/j D 4 and j�.L=N/j D 3:

Hence ƒ has at least three complete vertices, a contradiction.

Case 3: jƒj D 4. Since we have that j�.M=N/j � 4 and j�.L=N/j � 3, it fol-
lows that 3 � j�j � 4. If j�j D 3, then j�.M=N/j D 4. Notice that all primes
in �.M=N/ induce a complete subgraph K4 since ML=N DM=N � L=N . If
MC=C ŠM=N is isomorphic to one of the groups listed in [8, Table 2] ex-
cept Sz.8/, then by Atlas [4], we have that �.G=C/ D �.M=N/. It follows from
Lemma 2.8 that �.G/ n �.G=C/ � �.C /. By [18, Main Theorem], there exists at
least one edge in �.G/ n �.G=C/. Let � 2 Irr.C / such that r1r2 j �.1/, where r1
and r2 belong to �.G/ n �.G=C/. By Lemma 2.5, we have that r1, r2 and two
of the primes in �.MC=C/ induce a complete subgraph K4. This implies that
�.MC/ has two K4’s sharing a common edge, a contradiction since �.MC/ is
a subgraph of �.G/. If MC=C ŠM=N is isomorphic to Sz.8/, then by Atlas
[4], we have that j�.G=C/j D 4 or j�.G=C/j D 5. The former case cannot occur
using the same reasoning as above. So we may assume that j�.G=C/j D 5. Let

r 2 �.G=C/ n �.MC=C/:

By Lemma 2.9, we deduce that r is adjacent to at least three primes in �.MC=C/.
This means that�.G=C/ has a subgraph isomorphic toK5 � e, where e is an edge
ofK5. This is a contradiction since�.G=C/ is a subgraph of�.G/. Hence, by [8,
Theorem I], we may assume that M=N is isomorphic to L2.q/ for some suitable
prime power q. By [8, Theorem 3.2, Lemmas 3.4 and 3.5] and Atlas [4], we have
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that j�.G=C/j D 4 or j�.G=C/j D 5. By the same reasoning as before, we obtain
a contradiction. If j�j D 4, then �.M=N/ D �.L=N/ and j�.M=N/j D 4. We
also get a contradiction by the same reasoning as in j�j D 3.

Therefore, C D N and the proof is complete.

It follows from Lemma 4.4 that we may assume the following hypothesis.

Hypothesis 4.5. LetG be a nonsolvable group such that�.G/ is isomorphic to the
graph depicted in Figure 2. Suppose that N is the solvable radical of G such that
G=N is almost simple with socle M=N Š S , a nonabelian simple group. Write
� WD �.G/ n �.G=N/.

Remark 4.6. Under Hypothesis 4.5, since �.G/ is K5-free, we get that �.G=N/
is K5-free and so is �.M=N/. Hence S is isomorphic to one of the groups listed
in Lemma 2.11. By Lemma 2.8, we have that � D �.N / n �.G=N/.

Lemma 4.7. Under Hypothesis 4.5, we have that j�j � 3 and the subgraph of
�.G/ on � has at most one edge.

Proof. First, we claim that any two edges in � have no common vertex in �.G/.
Suppose by contradiction that, without loss of generality, ¹p1; p2º and ¹p2; p3º
are edges in�.G/, where p1, p2 and p3 belong to�. Then there exist irreducible
characters �1 and �2 of G such that p1p2 j �1.1/ and p2p3 j �2.1/, respectively.
Let �1 and �2 be irreducible constituents of .�1/N and .�2/N , respectively. By
Lemma 2.4, we have that p1p2 j �1.1/ and p2p3 j �2.1/. By Lemma 2.5, we ob-
tain that �.M/ has a subgraph isomorphic to two K4’s sharing a common vertex
p2 and so does �.G/, a contradiction. Hence the claim holds.

Assume by contradiction that j�j � 4; then j�j D 4 or 5 since j�.G=N/j � 3.
If j�j D 5, then by Lemma 2.12, there exist at least three edges in�, and so at least
two edges have a common vertex, a contradiction. If j�j D 4, then by Lemma 2.12
and the claim as above, there exist exactly two nonincident edges in � and also
in �.G/. By Lemma 2.5, there is no way to guarantee that �.G/ is isomorphic to
the graph depicted in Figure 2, a contradiction. The proof is complete.

Corollary 4.8. Under Hypothesis 4.5, if j�.S/j D 3, then such aG does not exist.

Proof. This follows directly from Lemma 4.7 and Atlas [4].

Lemma 4.9. Under Hypothesis 4.5, if j�.S/j D 4 and the subgraph�.S/ of�.G/
is complete, then such a G does not exist.
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Proof. By [8, Theorems I and 3.2, Lemmas 3.4 and 3.5] and Atlas [4], we have that
j�.G=N/j D 4 or j�.G=N/j D 5. By Lemma 4.7, the former case cannot occur.
Hence j�j D 3, and by Lemma 2.12, there exists one edge in �. By Lemma 2.5,
we have that two of the primes in � and two of the primes in �.S/ induce a com-
plete subgraphK4 in�.M/, and so also in�.G/. Since all primes in �.S/ induce
a complete subgraph K4, we obtain that �.G/ has a subgraph isomorphic to two
K4’s sharing two common vertices, a contradiction. The proof is complete.

Lemma 4.10. Under Hypothesis 4.5, if S Š J1, then such a G does not exist.

Proof. By Atlas [4], we have thatG=N Š J1, and so�D¹p1;p2º. Let � 2 Irr.G/
such that p1 j �.1/. Assume is an irreducible constituent of �N and I D IG. /;
then we have that p1 j  .1/ by Lemma 2.4. It follows from Clifford Theory that
there exists � 2 Irr. I / such that � D �G . Thus �.1/ D jG W I je .1/, where
e D Œ ; �N �. By Atlas [4], we know that the Schur multiplier of J1 is trivial. If
I D G, then by [9, Theorem 11.7], we have that  extends to G. By Lemma 2.6,
we obtain that p1 is adjacent to all primes in �.G=N/, and so deg.p1/ � 6, a con-
tradiction. If I ˆ G, then there exists a maximal subgroupK=N ofG=N such that
I=N � K=N . Hence jG=N W K=N j D jG W Kj j jG W I j; this means that some in-
dex of maximal subgroup in J1 divides jG W I j. Using Atlas [4], there are 7 possible
values for jG W Kj; they are

� 266 D 2 � 7 � 19,

� 1045 D 5 � 11 � 19,

� 1463 D 7 � 11 � 19,

� 1540 D 22 � 5 � 7 � 11,

� 1596 D 22 � 3 � 7 � 19,

� 2926 D 2 � 7 � 11 � 19, and

� 4180 D 22 � 5 � 11 � 19.

The last four cases cannot occur; otherwise, �.G/ has a subgraph isomorphic
to K5. For the first three cases, �.G/ must have a subgraph isomorphic to K4,
which contains both p1 and 19. By the same reasoning as above,�.G/ has another
subgraph isomorphic to K4, which contains both p2 and 19. Therefore, �.G/ has
a subgraph isomorphic to twoK4’s sharing a common vertex, a contradiction. The
proof is complete.

Corollary 4.11. Under Hypothesis 4.5, S cannot be isomorphic to one of the
groups listed in Lemma 2.11 (1), (2) and (7).
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Proof. This follows directly from Lemmas 4.7, 4.9 and 4.10, Atlas [4] and [27,
Sections 4 and 5].

Lemma 4.12. Under Hypothesis 4.5, if S is isomorphic to one of the groups listed
in Lemma 2.11 (4)–(6), then such a G does not exist.

Proof. Suppose that S Š Sz.q/ with q D 22nC1 and j�.S/j � 5. Since the orders
of the Suzuki simple groups are at least four distinct primes, we distinguish two
cases.

Case 1: j�.S/j D 4. By [8, Table 2], we obtain that S is isomorphic to Sz.8/ or
Sz.32/. Suppose that S Š Sz.8/; then �.G=N/D �.S/ or �.G=N/D �.S/[ ¹3º
by Atlas [4]. If �.G=N/ D �.S/, then j�j D 4, a contradiction by Lemma 4.7. If
�.G=N/ D �.S/ [ ¹3º, then by Lemma 2.9, we obtain that 3 is adjacent to 5,
7 and 13 in �.G=N/ and so also in �.G/. By Atlas [4], we have that ¹5; 7; 13º
induces a triangle in �.S/ and so also in �.G/. Therefore, ¹3; 5; 7; 13º induces
a complete subgraph K4 in �.G/. As j�j D 3, by Lemma 2.12, there exists an
edge in �. By Lemma 4.3, we have that two of the primes in � and two of the
primes in �.S/ D ¹2; 5; 7; 13º induce a complete subgraph K4 in �.M/ and so
also in�.G/. Hence�.G/ has a subgraph isomorphic to twoK4’s sharing a com-
mon vertex, a contradiction. Suppose that S Š Sz.32/; then �.G=N/ D �.S/ by
Atlas [4], and hence j�j D 4, a contradiction by Lemma 4.7.

Case 2: j�.S/j D 5. By [27, Theorem 4.1], all primes in �.S/ n ¹2º induce a com-
plete subgraph of �.S/ and so also of �.G/. Suppose that �.G=N/ n �.S/ ¤ ;
and let r 2 �.G=N/ n �.S/. By Lemma 2.9, we have that r is adjacent to all
primes in �.S/ n ¹2º in�.G=N/ and so also in�.G/. Hence�.G/ has a subgraph
isomorphic to K5, a contradiction. Therefore, �.G=N/ D �.S/, and so j�j D 3.
By the same reasoning as in Case 1, we can get a contradiction.

Suppose that S Š L3.q/ with q D pf and j�.S/j � 5. If 3 � j�.S/j � 4, then
by Atlas [4], we have that �.S/ D �.G=N/, and so j�j � 4, a contradiction by
Lemma 4.7. If j�.S/j D 5, then by [27, Theorem 5.3], we deduce that all primes
in �.S/ n ¹pº induce a complete subgraph of �.S/ and so also of �.G/. By the
same reasoning as in Case 2, we can get a contradiction.

Suppose that S Š U3.q/with q D pf and j�.S/j � 5. If 3 � j�.S/j � 4, then
by Atlas [4], we have that �.S/ D �.G=N/, and so j�j � 4, a contradiction by
Lemma 4.7. If j�.S/j D 5, then by [27, Theorem 5.5], we obtain that all primes
in �.S/ n ¹pº induce a complete subgraph of �.S/ and so also of �.G/. By the
same reasoning as in Case 2, we can get a contradiction.

The proof is complete.
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Now assume that S is isomorphic to one of the groups listed in Lemma 2.11 (3).
We will consider the cases p D 2 and p is odd separately. We will need Dickson’s
classification of the subgroups of L2.q/, and we list them below for convenience.

Lemma 4.13 (see [6, Hauptsatz II.8.27]). The group L2.pf / has only the follow-
ing subgroups:

(1) elementary abelian p-groups;

(2) cyclic groups of order z with z j .pf ˙ 1/=k, where k D .pf � 1; 2/;

(3) dihedral groups of order 2z with z as under (2);

(4) the alternating group A4 for p > 2 or p D 2 and f � 0 .mod 2/;

(5) the symmetric group S4 for p2f � 1 � 0 .mod 16/;

(6) the alternating group A5 for p D 5 or p2f � 1 � 0 .mod 5/;

(7) semidirect products of elementary abelian groups of order pm with cyclic
groups of order t , where t j .pm � 1/=.pf � 1; 2/ and t j .pf � 1/;

(8) L2.pm/ for m j f and PGL2.pm/ for 2m j f .

The main approach used to prove Lemmas 4.14 and 4.16 in each case is similar,
but we will give some details in each case for completeness and convenience.
Hence the proofs will not be too long.

Lemma 4.14. Under Hypothesis 4.5, if S is isomorphic to L2.q/ with q D pf and
j�.q ˙ 1/j � 4, where p is an odd prime, then such a G does not exist.

Proof. By Corollary 4.8, we have that 4 � j�.S/j � 8. We will complete the proof
one by one.

Case 1: j�.S/j D 4. By [8, Theorem 3.2 and Lemma 3.4] and Atlas [4], we obtain
that j�.G=N/j D 4 or j�.G=N/j D 5. By Lemma 4.7, the former case cannot
occur. So we may assume that �.G=N/ D �.S/ [ ¹rº and � D ¹p1; p2; p3º. By
Lemmas 2.12 and 4.7, without loss of generality, we may assume that ¹p1; p2º is
the only edge in �. Since neither p1 nor p2 is adjacent to p3 in �.G/, we deduce
that p3 is adjacent to all primes in �.G/ n ¹p1; p2º.

If q � 1 or q C 1 is a power of 2, then it suffices to show that �.q � 1/ D ¹2º
and �.q C 1/ D ¹2; s; tº since, by the same reasoning, we can also get a contra-
diction for j�.q � 1/j D 3 and j�.q C 1/j D 1. By [27, Theorem 5.2], we have
that ¹2; s; tº induces a triangle. It follows from Lemma 2.9 that r is adjacent to
all primes in ¹2; s; tº. Thus ¹2; s; t; rº induces a complete subgraph K4, and so it
follows that ¹2; s; t; r; p3º induces a complete subgraph K5, a contradiction.
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If �.q � 1/ D ¹2; sº and �.q C 1/ D ¹2; tº, then by [27, Theorem 5.2], we ob-
tain that ¹2; s; tº induces a path with deg.2/ D 2. By Lemma 2.9, we obtain that r
is adjacent to all primes in ¹2; s; tº. Thus �.G/ has a subgraph isomorphic to two
K4’s sharing three common vertices, a contradiction.
Case 2: j�.S/j D 5.
Subcase 2.1: �.G=N/D �.S/, and so j�j D 3. Write�D ¹p1;p2;p3º. By Lem-
mas 2.12 and 4.7, without loss of generality, we may assume that ¹p1; p2º is the
only edge in �. Since neither p1 nor p2 is adjacent to p3 in �.G/, we obtain
that p3 is adjacent to all primes in �.G/ n ¹p1; p2º. Let  2 Irr.N / such that
p1p2 j  .1/ and I D IM . /. By Clifford Theory, we have that jM W I j .1/ di-
vides all of the degrees in cd. M /.

If q � 1 or q C 1 is a power of 2, then it suffices to show that �.q � 1/ D ¹2º
and �.q C 1/ D ¹2; r; s; tº since, by the same reasoning, we can also get a contra-
diction for j�.q � 1/j D 4 and j�.q C 1/j D 1. It follows from [27, Theorem 5.2]
that ¹2; r; s; tº induces a complete subgraphK4. Thus it follows that ¹2; r; s; t; p3º
induces a complete subgraph K5, a contradiction.

If j�.q C �/j D 2 and j�.q � �/j D 3 for � 2 ¹1;�1º, then it suffices to show
that �.q � 1/ D ¹2; r; sº and �.q C 1/ D ¹2; tº since, by the same reasoning, we
can also get a contradiction for j�.q � 1/j D 2 and j�.q C 1/j D 3. By [27, The-
orem 5.2], we know that ¹2; r; sº induces a triangle and 2 is adjacent to t . Thus
¹2; r; s; p3º induces a complete subgraph K4, and this implies that ¹t; p; p1; p2º
induces a complete subgraph K4. If I DM and  extends to M , then by Lem-
ma 2.6, we obtain that .1/.q � 1/ and .1/.q C 1/ belong to cd. M /. If I DM
and does not extend toM , then by [15, Lemma 3.1], we deduce that .1/.q � 1/
and  .1/.q C 1/ belong to cd. M /. In both cases, �.G/ has a subgraph isomor-
phic to K5, a contradiction. So we may assume that I ˆ M . We consider the
various possibilities for the subgroup I=N of M=N Š S .

� If I=N is one of the groups listed in Lemma 4.13 (1), (2), (4) and (5), then
jM W I j is divisible by at least three distinct primes in �.S/. Hence �.G/ has
a subgraph isomorphic to K5, a contradiction.

� If I=N D T=N ÌH=N is one of the groups listed in Lemma 4.13 (3), then
jM W I j is divisible by at least two distinct primes in �.S/ n ¹2º. Since T=N
is cyclic, we deduce that  can extend to T , and we let  0 2 Irr.T / be such
that . 0/N D  . If  0 is I -invariant, then  0 and hence  extend to I , and so
2 .1/ 2 cd. I / by Lemma 2.6. If  0 is not I -invariant, then T must be the in-
ertia group of  0 in I since jI W T j D 2. It follows that . 0/I is irreducible, and
so 2 .1/ 2 cd. I /. Therefore, we always have 2 .1/ 2 cd. I /. By Clifford
Theory, we obtain that 2 .1/jM W I j divides some degree in cd. M /. Hence
�.G/ has a subgraph isomorphic to K5, a contradiction.
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� If I=N is the group listed in Lemma 4.13 (6), that is, I=N Š A5, then jM W I j
is divisible by primes in �.S/ n ¹2; 3; 5º. If  extends to I , then by Lemma 2.6,
we have that 2 divides some degree in cd. I /. If  does not extend to I , then
by [15, Lemma 3.1], we obtain that 2 divides some degree in cd. I /. In both
cases, we deduce that 2jM W I j .1/ divides some degree in cd. M / by Clifford
Theory. Hence �.G/ has a subgraph isomorphic to K5, a contradiction.

� If I=N is one of the groups listed in Lemma 4.13 (7), then 2t j jM W I j. Thus
¹2; t; p1; p2º induces a complete subgraph K4, and so �.G/ has a subgraph
isomorphic to two K4’s sharing a common vertex, a contradiction.

� If I=N is one of the groups listed in Lemma 4.13 (8). By [15, Lemma 3.7],
we have that ¹p; p1; p2º and one of the primes in ¹2; r; sº induce a complete
subgraph K4, a contradiction.

Subcase 2.2: �.G=N/ n �.S/ ¤ ;. If q � 1 or q C 1 is a power of 2, then by
[27, Theorem 5.2], we deduce that �.S/ n ¹pº induces a complete subgraph K4
in �.S/. By Lemma 2.9, we know that �.G=N/ contains a complete subgraph
K5, a contradiction.

If j�.q C �/j D 2 and j�.q � �/j D 3 for � 2 ¹1;�1º, then it suffices to show
that �.q C 1/ D ¹2; rº and �.q � 1/ D ¹2; s; tº since, by the same reasoning, we
can also get a contradiction for j�.q � 1/j D 2 and j�.q C 1/j D 3. By [27, The-
orem 5.2], ¹2; s; tº induces a triangle, and r is adjacent to 2 in �.S/. If u1 and
u2 are two distinct primes in �.G=N/ n �.S/, then by Lemmas 2.9 and 2.10, we
know that ¹2; s; t; u1; u2º induces a complete subgraphK5, a contradiction. Hence
�.G=N/ D �.S/ [ ¹uº for some prime u 2 �.G/, and thereby� D ¹p1; p2º. By
Lemma 2.9, we obtain that u is adjacent to all primes in ¹2; r; s; tº. Thus both
¹2; s; t; uº and ¹p2; p1; p; rº induce K4’s of �.G/. Let  2 Irr.N / such that
p1 j  .1/ and I D IM . /. By Clifford Theory, we know that jM W I j .1/ di-
vides all of the degrees in cd. M /. If I DM , then  .1/.q � 1/ and  .1/.q C 1/
belong to cd. M /. Hence �.G/ has a subgraph isomorphic to two K4’s shar-
ing three common vertices, a contradiction. Assume that I ˆ M . The following
proofs are the same as in Subcase 2.1, so we give only the main contradictions.

� If I=N is one of the groups listed in Lemma 4.13 (1), then�.G/ has a subgraph
isomorphic to K5, a contradiction.

� If I=N is one of the groups listed in Lemma 4.13 (2) and (3), then we get
deg.2/ � 6, a contradiction.

� If I=N is one of the groups listed in Lemma 4.13 (4) and (5), then jM W I j is
divisible by primes in �.S/ n ¹2; 3º. If  extends to I , then by Lemma 2.6,
we have that 2 .1/ or 3 .1/ divides some degrees in cd. I /. If  does not
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extend to I , then 2 .1/ or 3 .1/ divides some degree in cd. I / by Lemma 2.4.
By Clifford Theory, in both cases, we have that 2jM W I j .1/ or 3jM W I j .1/
divides some degree in cd. M /. Thus �.G/ has a subgraph isomorphic to K5,
a contradiction.

� If I=N is the group listed in Lemma 4.13 (6), that is, I=N Š A5, then�.G/ has
a subgraph isomorphic to two K4’s sharing a common vertex, a contradiction.

� If I=N D P=N ÌH=N is one of the groups listed in Lemma 4.13 (7), then
2r j jM W I j. We have that either s or t divides jI W P j; otherwise, �.G/ has
a subgraph isomorphic to K5, a contradiction. If  does not extend to P , then
the character degrees in cd. P / are all divisible by p. This implies that the char-
acter degrees in cd. I / and hence in cd. M / are all divisible by p. Thus we
have that pjM W I j .1/ divides some degree in cd. M /, and thereby all primes
in ¹r; s; t; p; u; p1º are neighbors of 2, and so deg.2/ � 6, a contradiction. So we
may assume that  extends to P . Since H=N is cyclic, by [9, Corollary 11.31],
we know that  extends to I . By Lemma 2.6, we obtain that jI W P j .1/ di-
vides some degree in cd. I /, and so, using Clifford Theory, we obtain that
jM W I jjI W P j .1/ divides some degree in cd. M /, and thereby �.G/ has
a subgraph isomorphic to two K4’s sharing two common vertices, a contradic-
tion.

� If I=N is one of the groups listed in Lemma 4.13 (8), then it follows from [15,
Lemma 3.7] that �.jM W I j/ has nontrivial intersection with each of the three
sets ¹pº, �.q � 1/ and �.q C 1/, and we get a contradiction.

By the same reasoning as in Case 2, we can get contradictions for 6 � j�.S/j � 7,
so the proof is omitted. If j�.S/j D 8, then by [27, Theorem 5.2], we obtain that
�.G/ has a subgraph isomorphic to two K4’s sharing a common vertex, a contra-
diction.

The proof is complete.

Lemma 4.15. Suppose that �.2f � 1/ [ �.2f C 1/ D ¹3; p1; p2; rº for an inte-
ger f � 1. If j�.2f � �/j D 1 and j�.2f C �/j D 3 for � 2 ¹1;�1º, then � D 1
and either

(1) f � 11 is a prime, 2f C 1 D 3a � pb1 � p
c
2 with a; b; c � 1 and 2f � 1 D r is

a Mersenne prime; or

(2) f D 8, 2f C 1 D 257 and 2f � 1 D 3 � 5 � 17.

Proof. It is obvious that f � 8. If f is odd, then 2f C 1 � 0 .mod 3/. By [8,
Lemma 1.2], we deduce that 2f C 1 is not a power of 3. Therefore, assume without
loss of generality that 2f C 1 D 3a � pb1 � p

c
2 with a; b; c � 1 and 2f � 1 D rd .
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By [8, Lemma 1.2] again, we have that d D 1 and r D 2f � 1 is a Mersenne
prime; in particular, f � 11 is a prime. This is situation (1). If f is even, then
2f � 1 � 0 .mod 3/. By [8, Lemma 1.2], we have that 2f � 1 is not a power of
3. Therefore, assume without loss of generality that 2f � 1 D 3a � pb1 � p

c
2 with

a; b; c � 1 and 2f C 1 D rd . By [8, Lemma 1.2] again, we deduce that d D 1
and r D 2f C 1 is a Fermat prime; in particular, f D 2n � 8, and so f D 4m.
Thus

2f � 1 D 3a � pb1 � p
c
2 D .2

m
� 1/.2m C 1/.22m C 1/:

Observe that .2m � 1; 2m C 1/ D .22m � 1; 22m C 1/ D 1. By [8, Lemma 1.2],
we must havem D 2, and so 2f C 1 D 257 and 2f � 1 D 3 � 5 � 17. This is situa-
tion (2). The proof is complete.

We will frequently use the fact that, if S Š L2.2f /, then �.S/ has three con-
nected components ¹2º, �.2f � 1/ and �.2f C 1/, and each component is a com-
plete graph, which can be found in [27, Theorem 5.2]. We will also make use of the
facts that the Schur multiplier for L2.2f / has order 1, where 2f > 4, and the only
outer automorphism of L2.2f / is the field automorphism. Notice that the group
listed in Lemma 4.13 (5) cannot be a subgroup of L2.2f /.

Lemma 4.16. Under Hypothesis 4.5, if S is isomorphic to

L2.2f / with j�.2f ˙ 1/j � 4;

then such a G does not exist.

Proof. By Corollary 4.8, we have that 4 � j�.S/j � 8. We will complete the proof
case by case.

Case 1: j�.S/j D 4. By [8, Lemma 3.5], we have that either S Š L2.24/ or f � 5
is prime, 2f � 1 D r is prime, and 2f C 1 D 3 � tˇ with t an odd prime and
ˇ � 1 odd. By Atlas [4], we have that j�.G=N/j D 4 or j�.G=N/j D 5. It fol-
lows from Lemma 4.7 that the former case cannot occur. So we may assume that
jG=N WM=N j D f , and so �.G=N/ D �.S/ [ ¹f º and � D ¹p1; p2; p3º. By
Lemmas 2.12 and 4.7, without loss of generality, we may assume that ¹p1; p2º is
the only edge in �. Since neither p1 nor p2 is adjacent to p3 in �.G/, we deduce
that p3 is adjacent to all primes in ¹2; 3; t; r; f º. By Lemma 2.9, we obtain that
f is adjacent to all primes in ¹3; t; rº. By [27, Theorem 5.2], we know that 3 is
adjacent to t . From the structure of �.G/, without loss of generality, we may as-
sume that p1 is adjacent to 3 and p2 is adjacent to t . Let �1; �2 2 Irr.G/ such that
3p1 j �1.1/ and tp2 j �2.1/, and  i 2 Irr.M/ an irreducible constituent of .�i /M
for i D 1; 2. Then �i .1/= i .1/ j jG=M j D f by Lemma 2.4, and so 3p1 j  1.1/
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and tp2 j  2.1/. Since �.G/ has no K4 containing both 3 and p1, we deduce that
j�. 1.1// n ¹3; p1ºj � 1. Similarly, j�. 2.1// n ¹t; p2ºj � 1. Let �1 and �2 be
irreducible constituents of . 1/N and . 2/N , respectively, and Ii D IM .�i / for
i D 1; 2. We have that j�.jM W I1j/ n ¹3; p1ºj � 1 since j�. 1.1// n ¹3; p1ºj � 1.

Assume that I1 ˆ M . We consider the various possibilities for the subgroup
I1=N of M=N Š S . Since f � 5 is a prime, we deduce that I1=N cannot be the
group listed in Lemma 4.13 (4).

� If I1=N is one of the groups listed in Lemma 4.13 (1)–(3), (6) and (8), then we
have that j�.jM W I1j/ n ¹3; p1ºj � 2, a contradiction.

� If I1=N D P=N ÌH=N is one of the groups listed in Lemma 4.13 (7), then
3t j jM W I1j j  1.1/. We have that r j jI1 W P j; otherwise, r j jM W I1j, a con-
tradiction. If �1 does not extend to P , then the character degrees in cd..�1/P /
are all divisible by 2. This implies that the character degrees in cd..�1/I / and
hence in cd..�1/M / are all divisible by 2. Thus 2jM W I1j�1.1/ j  1.1/, and
thereby �.G/ has at least two K4’s sharing two common vertices, a contradic-
tion. Hence we may assume that �1 extends to P . Since H=N is cyclic, by [9,
Corollary 11.31], we have that �1 extends to I1. By Lemma 2.6, we obtain that
jI1 W P j�1.1/ divides some degree in cd..�1/I /, and so, by Clifford Theory, we
know that jM W I1jjI1 W P j�1.1/ divides some degree in cd..�1/M /, and thereby
�.G/ has at least two K4’s sharing two common vertices, a contradiction.

Hence we may assume that I1 DM . Similarly, I2 DM . Since the Schur multi-
plier of M=N Š L2.2f / with f � 5 is trivial, by [9, Theorem 11.7], we obtain
that �1 extends to O�1 2 Irr.M/. By Lemma 2.6, we have that

 1.1/ 2 ¹�1.1/; 2
f �1.1/; .2

f
� 1/�1.1/; .2

f
C 1/�1.1/º � cd.M/:

In all cases, we must have p1 j �1.1/. Since .2f C 1/�1.1/ 2 cd.M/, we deduce
that ¹3; t; p1º induces a triangle. Similarly, ¹3; t; p2º induces a triangle. Hence
¹3; t; p1; p2º induces a complete subgraph K4, and so �.G/ has at least two K4’s
sharing two common vertices, a contradiction.
Case 2: j�.S/j D 5, and so f � 6.
Subcase 2.1: j�.2f � �/j D 1, j�.2f C �/j D 3 for � 2 ¹1;�1º. If S © L2.28/,
then by Lemma 4.15, we have that f � 11 is a prime, 2f C 1 D 3a � pb1 � p

c
2 with

a; b; c � 1 and 2f � 1 D r is a Mersenne prime. If jG=N WM=N j D f , then by
Lemma 2.9, we obtain that f is adjacent to all primes in ¹3; p1; p2; rº, and so, by
[27, Theorem 5.2], we know that ¹3; p1; p2; f º induces a complete subgraph K4.
If G=N DM=N , then � D ¹p3; p4; p5º. By Lemmas 2.12 and 4.7, without loss
of generality, we may assume that ¹p3; p4º is the only edge in �. Since neither
p3 nor p4 is adjacent to p5 in �.G/, we have that p5 is adjacent to all primes
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in ¹2; 3; p1; p2; rº. By [27, Theorem 5.2], we obtain that ¹3; p1; p2; p5º induces
a complete subgraph K4. In both cases, we can get a contradiction using the same
reasoning as in Case 1.

Hence we may assume that S Š L2.28/, and so � D ¹q1; q2; q3º. By Lem-
mas 2.12 and 4.7, without loss of generality, we may assume that ¹q1; q2º is the
only edge in �. Since neither q1 nor q2 is adjacent to q3 in �.G/, we deduce that
q3 is adjacent to all primes in ¹2; 3; 5; 17; 257º. It follows from [27, Theorem 5.2]
that ¹3; 5; 17; q3º induces a complete subgraphK4. By similar reasoning to Case 1,
we can get a contradiction.
Subcase 2.2: �.2f � 1/ D ¹p1; p2º and �.2f C 1/ D ¹p3; p4º. By Lemmas 2.9
and 2.10, we have that j�.G=N/ n �.M=N/j � 1. Let jG=N WM=N j D t . By
[28, Theorem A], we deduce that t .2f ˙ 1/ 2 cd.G=N/.

(1) �.G=N/ D �.M=N/ [ ¹rº and � D ¹s; pº. Then at most one prime in
¹piº

4
iD1 is in �.t/, say p1. We have that 2 … �.t/; otherwise, �.G/ has two K4’s

sharing two common vertices, a contradiction. From the structure of�.G/, we ob-
tain that r together with at least two primes in ¹piº4iD1 are contained in the same
complete subgraph K4.

If �.t/ D ¹r; p1º, then ¹p1; r; p3; p4º induces a complete subgraph K4 and so
does ¹p2; 2; p; sº. Thus there exists � 2 Irr.G/ such that ps j �.1/. Let  2 Irr.N /
be an irreducible constituent of �N and I D IM . /. Then �.1/= .1/ j jG=N j by
Lemma 2.4, and so ps j  .1/. Similar to Case 1, if I ˆ M , then I=N cannot be
one of the groups listed in Lemma 4.13 (1)–(7). If I=N is one of the groups listed
in Lemma 4.13 (8), then by [15, Lemma 3.7], we have that jM W I j has nontriv-
ial intersection with each of the three sets ¹2º, �.2f � 1/ and �.2f C 1/. Thus
jM W I j is divisible by at least three primes in �.S/, and so �.G/ would contain
a subgraph isomorphic to K5, a contradiction. If I DM , then we can get a con-
tradiction using the same reasoning as in Case 1.

If �.t/ D ¹rº, then we consider the various possibilities for r together with at
least two primes in ¹piº4iD1 are contained in the same complete subgraph K4.

� Assume without loss of generality that ¹p1; p2; p3; rº induces a complete sub-
graph K4. Using the same reasoning as above, we can get a contradiction.

� Assume without loss of generality that ¹p1; p2; 2; rº induces a complete sub-
graph K4. From the structure of �.G/, we know that p or s, say p, is adja-
cent to p1 or p2, say p1, and p is not adjacent to p2. Let � 2 Irr.G/ such that
pp1 j �.1/ and  2 Irr.M/ an irreducible constituent of �M . Then we have
that �.1/= .1/ j jG=M j D t by Lemma 2.4, and so pp1 j  .1/. Since �.G/
has no K4 containing both p and p1, we have that j�. .1// n ¹p; p1ºj � 1. Let
� 2 Irr.N / be an irreducible constituent of  N and I D IM .�/. Assume that
I DM . Since the Schur multiplier ofM=N Š L2.2f / with f � 6 is trivial, by
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[9, Theorem 11.7], we obtain that � extends to �0 2 Irr.M/. By Lemma 2.6, we
have that

 .1/ 2 ¹�.1/; 2f �.1/; .2f � 1/�.1/; .2f C 1/�.1/º � cd.M/:

In all cases, we must have p j �.1/. Since .2f � 1/�.1/ 2 cd.M/, we deduce
that p is adjacent to p2, a contradiction. Hence we may assume that I ˆ M .
By the same reasoning as in Case 1, I=N cannot be one of the groups listed in
Lemma 4.13 (1)–(7). If I=N is one of the groups listed in Lemma 4.13 (8), then
by [15, Lemma 3.7], we have that jM W I j is divisible by at least three primes in
�.S/, and so �.G/ would contain a subgraph isomorphic to two K4’s sharing
three common vertices, a contradiction.

� Assume without loss of generality that ¹p1; p2; s; rº induces a complete sub-
graph K4. If p is adjacent to s, then there exists � 2 Irr.G/ such that ps j �.1/.
Let  2 Irr.N / be an irreducible constituent of �N . Then �.1/= .1/ j jG=N j
by Lemma 2.4, and so ps j  .1/. By Lemma 2.5, we have that p, s and two of
the primes in ¹2º [ ¹piº4iD1 are contained in the same complete subgraph K4,
a contradiction. So p is not adjacent to s, and thereby p must be adjacent to both
p1 and p2. Thus s is adjacent to p3 or p4, say p3, and s is not adjacent to p4.
By similar reasoning to above, we can get a contradiction.

� Assume without loss of generality that ¹p1; p3; r; sº induces a complete sub-
graph K4. Using the same reasoning as above, we have that p is not adjacent
to s. Thus there is no way to guarantee that �.G/ is isomorphic to the graph
depicted in Figure 2, a contradiction.

� Assume without loss of generality that ¹p1; p3; r; 2º induces a complete sub-
graph K4. Then p is adjacent to 2, and by similar reasoning to above, we can
get a contradiction.

(2) �.G=N/ D �.M=N/ and � D ¹r; s; tº. By Lemmas 2.12 and 4.7, without
loss of generality, we may assume that ¹r; sº is the only edge in�. Since neither r
nor s is adjacent to t in �.G/, we obtain that the prime t is adjacent to all primes
in ¹2; p1; p2; p3; p4º. By the same reasoning as in (1), we can get a contradiction.
Case 3: j�.S/j D 6, and so f � 10.
Subcase 3.1: j�.2f C �/j D 1 and j�.2f � �/j D 4 for � 2 ¹1;�1º. It suffices
to show that �.2f � 1/ D ¹p1; p2; p3; p4º and �.2f C 1/ D ¹p5º since, by the
same reasoning, we can also get a contradiction for

j�.2f � 1/j D 1 and j�.2f C 1/j D 4:

It follows from Lemma 2.9 and [28, Theorem A] that �.S/ D �.G=N/. Let

jG=N WM=N j D t and �.G/ D �.S/ [ ¹p; rº:
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By [28, Theorem A], we know that t .2f ˙ 1/ 2 cd.G=N/, and so it follows that
�.t/ � ¹p1; p2; p3; p4º and j�.t/j � 2. From the structure of �.G/, there exists
some prime in ¹p1; p2; p3; p4º n �.t/, say p1, such that p1 is adjacent to p or
r , say p, and p1 is not adjacent to p5. Let � 2 Irr.G/ such that pp1 j �.1/ and
 2 Irr.M/ an irreducible constituent of �M . Then �.1/= .1/ j jG=M j D t by
Lemma 2.4, and so pp1 j  .1/. Since �.G/ has no K4 containing both p and p1,
we have that j�. .1// n ¹p; p1ºj � 1. Let � 2 Irr.N / be an irreducible constituent
of  N and I D IM .�/. By the same reasoning as in Subcase 2.2, we can get
a contradiction.

Subcase 3.2: j�.2f C �/j D 2 and j�.2f � �/j D 3 for � 2 ¹1;�1º. It suffices
to show that �.2f � 1/ D ¹p1; p2; p3º and �.2f C 1/ D ¹p4; p5º since, by the
same reasoning, we can also get a contradiction for

j�.2f � 1/j D 2 and j�.2f C 1/j D 3:

Let jG=N WM=N j D t and �.G/ D �.S/ [ ¹p; rº. By [28, Theorem A], we ob-
tain that t .2f ˙ 1/ 2 cd.G=N/.

If �.G=N/ ¤ �.M=N/, then j�.t/j D 1, say �.t/ D ¹pº. From the structure
of �.G/, there exists a prime in ¹p1; p2; p3º, say p1, such that p1 is adjacent
to r , and �.G/ has no K4 containing both r and p1. By the same reasoning as in
Subcase 2.2, we can get a contradiction.

So we may assume that �.G=N/ D �.M=N/. If 2 2 �.t/, then t D 2˛ with
˛ � 1 an integer. Thus there exists a prime in ¹p1; p2; p3º, say p1, such that p1
is adjacent to r , and �.G/ has no K4 containing both p1 and r . By the same
reasoning as in Subcase 2.2, we can get a contradiction.

Now we assume that 2 … �.t/. Since t .2f ˙ 1/ 2 cd.G=N/, we deduce that
�.t/ has at most two primes which are contained in ¹piº5iD1, and p4 and p5 can-
not be contained in �.t/ together. If p4 or p5 is in �.t/, say p4, then there exists
a prime in ¹piº3iD1 n �.t/, say p1, such that p1 is adjacent to p or r , say p, and
�.G/ has no K4 containing both p and p1. By the same reasoning as in Sub-
case 2.2, we can get a contradiction. If two of the primes in ¹p1; p2; p3º are in
�.t/, say p1 and p2, then there exists a prime p or r , say p, such that p is adja-
cent to p4 or p5, say p4, and p is not adjacent to p5. By the same reasoning as in
Subcase 2.2, we can get a contradiction.

Hence, without loss of generality, we have that t D p˛1 with ˛ � 0 being an
integer. If ˛ ¤ 0, then using the same reasoning as in Subcase 2.2, we can get that
p and p2 would be contained in the same complete subgraphK4. Similarly, p and
p3 would be contained in the same complete subgraphK4, r and p2 would be con-
tained in the same complete subgraphK4, r and p3 would be contained in the same
complete subgraph K4. Hence ¹p2; p3; p; rº induces a complete subgraph K4.
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Assume without loss of generality that p is adjacent to p4 (this assumption is
reasonable since p must be adjacent to at least one of the primes in ¹p4; p5º).
Let � 2 Irr.G/ such that pp4 j �.1/, and  2 Irr.M/ an irreducible constituent
of �M . Then �.1/= .1/ j jG=M j D p˛1 by Lemma 2.4, and so pp4 j  .1/. Since
�.G/ has noK4 containing both p and p4, we have that j�. .1// n ¹p; p4ºj � 1.
Let � 2 Irr.N / be an irreducible constituent of  N and I D IM .�/. Similar to
Subcase 2.2, we can get a contradiction. Hence we may assume that ˛ D 0, that
is, G=N DM=N Š S . Using a similar argument to above, we can get that ev-
ery prime in ¹p1; p2; p3º is adjacent to at most one prime in ¹p4; p5º, and every
prime in ¹p4; p5º is adjacent to at most one prime in ¹p1; p2; p3º. Clearly, the
case that there exists at most one edge between ¹p1; p2; p3º and ¹p4; p5º cannot
occur. Hence we may assume without loss of generality that p1 is adjacent to p4,
and p2 is adjacent to p5. From the structure of�.G/, we know that p1 and at least
one prime in ¹p2; p3; p4º are contained in the same complete subgraph K4. In all
cases, we can get a contradiction using the same reasoning as in Subcase 2.2.

Case 4: j�.S/j D 7, and so f � 12. From Lemma 2.9, we have that �.S/ D
�.G=N/. Let jG=N WM=N j D t and �.G/ D �.S/ [ ¹pº. By [28, Theorem A],
we know that t .2f ˙ 1/ 2 cd.G=N/.

Subcase 4.1: j�.2f C �/j D 2 and j�.2f � �/j D 4 for � 2 ¹1;�1º. It suffices
to show that �.2f � 1/ D ¹p1; p2; p3; p4º and �.2f C 1/ D ¹p5; p6º since, by
the same reasoning, we can also get a contradiction for j�.2f � 1/j D 2 and
j�.2f C 1/j D 4. By [27, Theorem 5.2], we have that �.t/ � ¹p1; p2; p3; p4º
and j�.t/j � 1. Otherwise, �.G/ would contain a subgraph isomorphic to K5 or
deg.2/ � 6, a contradiction. Assume without loss of generality that t D p˛1 , where
˛ is a nonnegative integer. By [27, Theorem 5.2], we know that p is adjacent to ex-
actly two primes in ¹p1; p2; p3; p4º, say p2 and one of the primes in ¹p1; p3; p4º.
Hence there exists � 2 Irr.G/ such that pp2 j �.1/. Let  2 Irr.M/ be an irre-
ducible constituent of �M . Then �.1/= .1/ j jG=M j D p˛1 by Lemma 2.4, and
so pp2 j  .1/. Since �.G/ has no K4 containing both p and p2, we have that
j�. .1// n ¹p; p2ºj � 1. Let � 2 Irr.N / be an irreducible constituent of  N and
I D IM .�/. Similar to Subcase 2.2, we can get a contradiction.

Subcase 4.2: �.2f C 1/ D ¹p1; p2; p3º and �.2f � 1/ D ¹p4; p5; p6º. By [27,
Theorem 5.2], we deduce that both ¹p1; p2; p3º and ¹p4; p5; p6º induce trian-
gles. By the same reasoning as in Subcase 2.2, we may assume that t D p˛1 , where
˛ is a nonnegative integer. If ˛ ¤ 0, then all primes in ¹p2; p3; p4; p5; p6º are
neighbors of p1, and hence ¹p1; p4; p5; p6º induces a complete subgraph K4.
From the structure of �.G/, we know that the prime p is adjacent to exactly two
primes in ¹p4; p5; p6º, say p4 and p5. Hence there exists � 2 Irr.G/ such that
pp4 j �.1/. Let  2 Irr.M/ be an irreducible constituent of �M . Then we have
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that �.1/= .1/ j jG=M j D p˛1 by Lemma 2.4, and so pp4 j  .1/. Since �.G/
has no K4 containing both p and p4, we have that j�. .1// n ¹p; p4ºj � 1. Let
� 2 Irr.N / be an irreducible constituent of  N and I D IM .�/. By the same rea-
soning as in Subcase 2.2, we can get a contradiction. Hence we may assume that
˛ D 0, that is, G=N Š S . From the structure of �.G/, there exists some pi in
¹pj º

6
jD1, say p1, such that p is adjacent to p1 in�.G/, and�.G/ has noK4 con-

taining both p and p1. Let � 2 Irr.G/ such that pp1 j �.1/. Since�.G/ has noK4
containing both p and p1, we have that j�.�.1// n ¹p; p1ºj � 1. Let  2 Irr.N /
be an irreducible constituent of �N and I D IG. /. By the same reasoning as in
Subcase 2.2, we can get a contradiction.

Case 5: j�.S/j D 8, and so f � 20. It follows that �.S/ D �.G=N/ D �.G/. If
G=N ¤M=N , then by [28, Theorem A], we know that

jG=N WM=N j.2f ˙ 1/ 2 cd.G=N/:

Let r 2 �.jG WM j/. Then r is adjacent to all primes in �.22f � 1/ n ¹rº, and so
deg.r/ � 6, a contradiction. So we may assume that G=N DM=N Š S . It suf-
fices to show that �.2f � 1/ D ¹p1; p2; p3º and �.2f C 1/ D ¹p4; p5; p6; p7º
since, by the same reasoning, we can also get a contradiction for j�.2f � 1/j D 4
and j�.2f C 1/j D 3. By [27, Theorem 5.2], we obtain that 2 is adjacent to exactly
two primes in ¹p4; p5; p6; p7º, say p4 and p5. Hence there exists � 2 Irr.G/ such
that 2p4 j �.1/. Since �.G/ has no K4 containing both 2 and p4, we know that
j�.�.1// n ¹2; p4ºj � 1. Let  2 Irr.N / be an irreducible constituent of �N and
I D IG. /. By the same reasoning as in Subcase 2.2, we can get a contradiction.

The proof is complete.

Proof of Theorem 1.1. This follows directly from Lemma 4.1, Theorem 3.1 and
Theorem 4.2.
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