
Bull. Malays. Math. Sci. Soc.          (2023) 46:130 
https://doi.org/10.1007/s40840-023-01519-w

Zero-Divisor Graphs of Rings and Their Hermitian Matrices

Lu Lu1 · Lihua Feng1 ·Weijun Liu1 · Guihai Yu2

Received: 14 January 2023 / Revised: 10 May 2023 / Accepted: 10 May 2023
© The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti
Sains Malaysia 2023

Abstract
This paper investigates the interplay between the algebraic properties of the rings,
the combinatorial properties of their corresponding zero-divisor graphs, and the asso-
ciated Hermitian matrix of such graphs. For a finite ring R, its zero-divisor graph
may contain both directed edges and undirected edges; such graphs are called mixed
graphs. The Hermitian matrices of mixed graphs are natural generalizations of the
adjacency matrices of undirected graphs. In this paper, we completely determine the
structure and the Hermitian eigenvalues of the zero-divisor graph �(D × R) by using
the structure and the Hermitian eigenvalues of the zero-divisor graph �(R). As appli-
cations, we investigate �(D × R) for some special R and extend some known results
on this topic.
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1 Introduction

The concept of zero-divisor graphswas originally developed to explore the relationship
between the graph-theoretic properties of these graphs and the corresponding ring-
properties of commutative finite rings. Beck [4] first defined the zero-divisor graph
�(R) of a commutative ring R as the graph with vertex set R, where two vertices
x and y are adjacent if and only if their product xy equals zero. This definition was
later modified by Anderson and Livingston [2], who defined the zero-divisor graph
�(R) of a commutative ring R as the graph with vertex set Z(R)∗ = Z(R)\0, which
consists of the nonzero zero divisors, and two vertices x and y are adjacent if and
only if their product xy equals zero. This modified definition has gained favor among
mathematicians and has led to many significant contributions in the field, including
works by Anderson [1, 3], Lucas [13], and Mulay [15].

Redmond [16] extended the concept of zero-divisor graphs to non-commutative
rings. Let R be a non-commutative ring, and let Zl(R) and Zr (R) denote the sets of
left and right zero divisors, respectively, where an element x is a left (right) zero divisor
if there exists y ∈ R such that xy = 0 (resp. yx = 0). The set Z(R) = Zl(R)∪ Zr (R)

is the set of zero divisors of R, and its complement Z(R) = R\Z(R) is the set of
cancellable elements. For any subset S ⊆ R, we use S∗ to denote the set of nonzero
elements in S, i.e., S∗ = S\{0}. The zero-divisor graph of R has vertex set Z(R)∗,
and there is a directed edge from x to y if and only if xy = 0.

This definition is also suitable for commutative rings, where if R is commutative,
then a directed edge exists from x to y if and only if there is a directed edge from
y to x . Throughout this paper, two directed edges sharing the same end-points and
opposite directions are regarded as one undirected edge. For a commutative ring R,
the zero-divisor graph defined by Redmond is equivalent to that defined by Anderson
and Livingston. Thus, Redmond’s definition can be considered a natural extension of
that given by Anderson and Livingston. Recently, Lu et al. [12] introduced the concept
of signed zero-divisor graphs by considering the nilpotent elements of the ring and
generalized some results on zero-divisor graphs.

A graph � contains both undirected edges and directed edges is called a mixed
graph. If there is a directed edge from x to y, then we write x → y and this edge
is denoted by (x, y). If x → y and y → x , then we write x ↔ y and these two
directed edges are regarded as one undirected edge {x, y}. For a subset U ⊆ V (�),
the induced mixed subgraph �[U ] is the mixed graph obtained from � by deleting
all vertices in V (�)\U and their associated edges. The underlying graph � is the
undirected graph with vertex set V (�) and two vertices x and y are adjacent, denoted
by x ∼ y, if at least one of x → y and y → x holds. If � is connected then � is
called connected. If for any pair of vertices x, y, there exists a directed path from x to
y, then � is called strongly connected. For a vertex v ∈ V (�), the in-neighbor of v is
N+(v) = {u | u → v, v � u}, the out-neighbor of v is N−(v) = {u | v → u, u � v}
and the in-out-neighbor of v is N #(v) = {u | u ↔ v}. The in-degree, out-degree
and in-out-degree of v are, respectively, d+(v) = |N+(v)|, d−(v) = |N−(v)| and
d#(v) = |N #(v)|. The maximum in-degree, out-degree and in-out-degree are denoted
by�+(�),�−(�) and�#(�). The minimum in-degree, out-degree and in-out-degree
are denoted by δ+(�),δ−(�) and δ#(�). We would like to write, for example, d+

� (v)
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for d+(v) if we want to emphasize which graph we mean. For other notations in graph
theory, we would like to refer the reader to [5].

The Hermitian matrix of a mixed graph is a natural generalization of the adjacency
matrix of an undirected graph, which was introduced by Liu and Li [11] and Guo and
Mohar [7] independently. For a mixed graph � the Hermitian matrix of � is a square
matrix H(�) = (huv) indexed by the vertex set of � with

huv =

⎧
⎪⎪⎨

⎪⎪⎩

1, if u ↔ v,

i, if u → v and v � u,

−i, if v → u and u � v,

0, otherwise,

where i is the imaginary unit. It is clear that the Hermitian matrix of � is coincident
with the adjacency matrix of � when � is undirected. Since H(�) is Hermitian, all its
eigenvalues are real and can be listed asλ1 ≥ λ2 ≥ · · · ≥ λn . The collection of all these
eigenvalues is the spectrum of �, denoted by Sp(�) = {[λ1]m1 , [λ2]m2 , . . . , [λs]ms },
where λ1, . . . , λs are distinct eigenvalues and m1, . . . ,ms are multiplicities of them.
The rank of � is defined to be the rank of H(�).

It is well known that a finite, commutative ring with identity can be expressed as a
direct sum of local rings. As a result, the study of the zero-divisor graph over a sum
of two rings would be the key to investigating the zero-divisor graphs over general
rings. Motivated by this thought, in this paper, we investigate the zero-divisor graph
�(D × R) over the ring D × R, where D is an integral domain and R is an arbitrary
ring (not necessarily be commutative). Firstly, we completely determine the structure
of �(D × R) with respect to the structure of �(R) (Theorem 1). Next, we obtain the
spectrum of �(D × R) with respect to the spectrum of �(R) (Theorem 2). At last, we
present some applications of our results, which extend some existing results in [10,
14, 17].

2 The Structure of 0(D × R)

In this part, we investigate the structure of the zero-divisor graph �(D × R) for an
integral domain D and a non-trivial ring R. To make the definition of zero-divisor
graphs clear, we start off with a simple example.

Example 1 Let R be the ring of upper triangular matrices of size 2 × 2 over the field
Z2. The zero-divisor graph � of R is presented in Fig. 1.

Let R be a non-trivial ring with zero-divisor graph � and D an integral domain. In
what follows, we always denote by �′ the zero-divisor graph of D × R.

Lemma 1 The vertex set of �′ is Z(D × R)∗ = (D∗ × {0}) ∪ ({0} × R∗) ∪
(D∗ × Z(R)∗).

Proof Note that (a, 0)(0, b) = (0, 0) for any a ∈ D∗ and b ∈ R∗. It means that
D∗ × {0} ∪ {0} × R∗ ⊆ Z(D × R)∗. Moreover, for any (a, b) ∈ D∗ × Z(R)∗, since
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Fig. 1 The zero-divisor graph �

b ∈ Z(R)∗, there exists d �= 0 such that bd = 0 or db = 0. Therefore, (a, b)(0, d) = 0
or (0, d)(a, b) = 0, which implies that D∗ × Z(R)∗ ⊆ Z(D × R)∗. Thus, we have
(D∗ × 0) ∪ (0 × R∗) ∪ (D∗ × Z(R)∗) ⊆ Z(D × R)∗.

Conversely, it needs to show that Z(D × R)∗ ⊆ (D∗ × {0}) ∪ ({0} × R∗) ∪
(D∗ × Z(R)∗). Assume that (a, b) ∈ Z(D × R)∗. If a = 0 or b = 0 then (a, b) ∈
(D∗ × {0}) ∪ ({0} × R∗). Therefore, it suffices to show that (a, b) ∈ D∗ × Z(R)∗
when a, b �= 0. As a ∈ D∗ holds whenever a �= 0, it only needs to show b ∈ Z(R)∗.
Since (a, b) ∈ Z(D × R)∗, there exists a nonzero element (c, d) ∈ D × R such that
(a, b)(c, d) = 0 or (c, d)(a, b) = 0. If the former occurs, then ac = 0 and bd = 0.
It leads to c = 0 since a ∈ D∗, thereby d �= 0 because (c, d) �= (0, 0). It means
that b ∈ Zl(R)∗. If the latter occurs, then ca = 0 and db = 0. Similarly, we have
b ∈ Zr (R)∗. Both cases lead to b ∈ Z(R)∗. �


Though Lemma 1 gives a partition of the vertex set V (�′), we need another partition
that could reveal the relations between the vertices more clearly.

Lemma 2 The vertex set V (�′) has a partition � : V (�′) = (D∗ × {0}) ∪ ({0} ×
Z(R))∪ ({0}× Z(R)∗)∪ (D∗ × Z(R)∗). Furthermore, the following statements hold.

(i) The vertex sets D∗ × {0}, {0} × Z(R) and D∗ × Z(R)∗ are all independent sets.
(ii) For each vertex x1 ∈ D∗ × {0}, d+

�′(x1) = d−
�′(x1) = 0 and d#

�′(x1) = |R| − 1.
(iii) For each vertex x2 ∈ {0} × Z(R), d+

�′(x2) = d−
�′(x2) = 0 and d#

�′(x2) = |D| − 1.
(iv) For each vertex x3 = (0, γ ) ∈ {0} × Z(R)∗, d+

�′(x3) = |D|d+
� (γ ), d−

�′(x3) =
|D|d−

� (γ ) and d#
�′(x3) = |D|(d#�(γ ) + 1) − 1.

(v) For each vertex x4 = (α, γ ) ∈ D∗ × Z(R)∗, d+
�′(x4) = d+

� (γ ), d−
�′(x4) = d−

� (γ )

and d#
�′(x4) = d#�(γ ).

Proof From Lemma 1, (D∗ × {0}) ∪ ({0} × R∗) ∪ (D∗ × Z(R)∗) is a partition of
V (�′). Note that R∗ = Z(R) ∪ Z(R)∗ is a partition of R∗. We get the partition �.

For any two vertices (α, 0), (α′, 0) ∈ D∗ × {0}, since

(α, 0)(α′, 0) = (αα′, 0) and αα′ �= 0,
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we have (α, 0) � (α′, 0) and thus the vertex set D∗ × {0} is an independent set. For
two vertices (0, β), (0, β ′) ∈ {0} × Z(R), since

(0, β)(0, β ′) = (0, ββ ′) and ββ ′ �= 0,

we have (0, β) � (0, β ′) and thus {0} × Z(R) is an independent set. For any two
vertices (α, β), (α′, β ′) ∈ D∗ × Z(R)∗, since

(α, β)(α′, β ′) = (αα′, ββ ′) and αα′ �= 0,

we have (α, β) � (α′, β ′), and thereby D∗ × Z(R)∗ is an independent set. Thus, (i)
holds.

Assume that x1 = (α, 0) is an arbitrary vertex in D∗×{0}. For any (0, b) ∈ {0}×R∗,
we have

(α, 0)(0, b) = (0, b)(α, 0) = (0, 0),

and thus x1 ↔ (0, b). For any (a, b) ∈ D∗ × Z(R)∗, since

(α, 0)(a, b) = (αa, 0), (a, b)(α, 0) = (aα, 0) and αa′, a′α �= 0,

we have x1 � (a, b). Inasmuch as D∗ ×{0} is an independent set and V (�′) = (D∗ ×
{0})∪(0×R∗)∪(D∗×Z(R)∗), we have obtained the relations between x1 and all other
vertices. It indicates that d+(x1) = d−(x1) = 0 and d#(x1) = |{0} × R∗| = |R| − 1.
Thus (ii) holds.

Assume that x2 = (0, β) is an arbitrary vertex in {0} × Z(R). It has been proved
that {0} × Z(R) is an independent set and x2 ↔ x1 for any x1 ∈ D∗ × {0}. For any
vertex (0, b) ∈ {0} × Z(R)∗, since

(0, β)(0, b) = (0, βb), (0, b)(0, β) = (0, bβ) and βb, bβ �= 0,

we have x2 � (0, b). Similarly, one could easily verify that x2 � (a, b) for any
(a, b) ∈ D∗ × Z(R)∗. Therefore, we have obtained the relations between x2 and all
other vertices. It implies that d+(x2) = d−(x2) = 0 and d#(x2) = |D∗ × {0}| =
|D| − 1. Thus (iii) holds.

Assume that x3 = (0, γ ) is an arbitrary vertex in {0} × Z(R)∗. The relations
between x3 and (D∗ × {0}) ∪ ({0} × Z(R)) have already been obtained. For any
(0, b) ∈ {0}×Z(R)∗, we have (0, γ ) → (0, b) if and only if (0, γ )(0, b) = (0, γ b) =
(0, 0) if and only if γ b = 0 if and only if γ → b in �; similarly, one could verify
that (0, b) → (0, γ ) if and only if b → γ in �. For any (a, b) ∈ D∗ × Z(R)∗, we
have (0, γ ) → (a, b) if and only if (0, γ )(a, b) = (0, γ b) = (0, 0) if and only if
γ b = 0 if and only if γ → b in �; similarly, one could verify that (a, b) → (0, γ )

if and only if b → γ in �. Therefore, the relations between x3 and all other vertices
have been obtained. It implies that d+

�′(x3) = |D|d+
� (γ ), d−

�′(x3) = |D|d−
� (γ ) and

d#
�′(x3) = |D|d#�(γ ) + |D∗ × {0}| = |D|(d#�(γ ) + 1) − 1. Thus (iv) holds.
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Assume that x4 = (α, γ ) is an arbitrary vertex in D∗×Z(R)∗. The relations between
x4 and (D∗ × {0}) ∪ ({0} × Z(R)) ∪ ({0} × Z(R)∗) have already been obtained and
D∗ × Z(R)∗ is an independent set. We get the relations between x4 and all other
vertices. It leads to d+

�′(x4) = d+
� (γ ), d−

�′(x4) = d−
� (γ ) and d#

�′(x4) = d#�(γ ). Thus
(v) holds.

The proof is completed. �

In fact, the proof of Lemma 2 gives the relation between every pair of vertices of

�′, and thereby the structure of �′ is legible. In order to rigorously describe this graph,
some definitions of graph operations are needed. For two graphs �1 and �2, the join
�1∇�2 is the graph with vertex set V (�1) ∪ V (�2) and edge set E(�1) ∪ E(�2) ∪
{{u, v} | u ∈ V (�1), v ∈ V (�2)}. In other words, �1∇�2 is obtained from �1 and �2
by adding all undirected edges between them. Now we give a more general definition.
For a subset S1 ⊆ V (�1) and S2 ⊆ V (�2), the partial join (�1, S1)∇(�2, S2) is
the graph with vertex set V (�1) ∪ V (�2) and edge set E(�1) ∪ E(�2) ∪ {{u, v} |
u ∈ S1, v ∈ S2}. For a graph �, the double cover C(�) is the graph with vertex set
V (�) × {0, 1}, and (u, j) → (v, k) in C(�) if and only if u → v in � and j �= k.
Denote by V 0(C(�)) = {(v, 0) | v ∈ V (�)} and V 1(C(�)) = {(v, 1) | v ∈ V (�)}.
The strong double cover SC(�) is obtained from C(�) by adding the directed edges
((u, 0), (v, 0))whenu → v in�, that is, SC(�) is obtained fromC(�)by embedding�

in V 0(C(�)) correspondingly. For a positive integerm, the blow-up Bm(�) is the graph
obtained from � by replacing each vertex u with an independent set {u1, u2, . . . , um},
and if u → v in � then u j → vk for any 1 ≤ j, k ≤ m. For a subset S ⊆ V (�), define
a function fS of V (�) by f (v) = (m − 1)δS(v) + 1, where δS(v) = 1 if v ∈ S and 0
otherwise. The partial blow-up Bm(�, S) is the graph obtained from � by replacing
each vertex u ∈ V (�) with an independent set {u1, u2, . . . , u fS(u)}, and if u → v

in � then u j → vk for any 1 ≤ j ≤ fS(u) and 1 ≤ k ≤ fS(v). One could access
the meaning of these graph operations in Fig. 2 , in which the fat lines between two
parts mean every vertex in one part is adjacent to every vertex of the other part by an
undirected edge.

Now we are at the position to the main result of this part.

Theorem 1 Let R be a ring with zero-divisor graph � and D an integral domain.
Assume that |D| = s, |R| = t and |V (�)| = |Z(R)∗| = l. Then, the zero-divisor
graph �′ of D × R satisfies:

(i) �′ = ((t − l − 1)K1∇(s − 1)K1, V1)∇(Bs−1(SC(�), V2), V3) (as shown in Fig.3
), where V1 = V ((s − 1)K1), V2 = V 1(C(�)) and V3 = V 0(C(�));

(ii) |V (�′)| = (s − 1)(l + 1) + t − 1;
(iii) �+(�′) = s�+(�),�−(�) = s�−(�) and�#(�′) = max{s(�#+1)−1, t−1};
(iv) δ+(�′) = δ−(γ ′) = 0 and δ#(�′) = min{s − 1, δ#(�)};
(v) the underlying graph �′ of �′ is connected with diameter d(�′) ≤ 3;
(vi) �′ is strongly connected if and only if � is strongly connected.

Proof According to the proof of Lemma 2, the structure of �′ is clear and could be
shown as Fig. 3, where each fat undirected (directed) line between two parts means
that there are undirected (resp. directed) edges between every vertex of one part and
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Fig. 2 The graph operations

Fig. 3 The structure of the zero-divisor graph �′
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every vertex of the other part. The first four statements follows. The fifth statement
follows from [16, Theorem 3.1]. In what follows, we show (vi).

For convenience, set V0 = {0} × Z(R), V1 = D∗ × {0}, V3 = {0} × Z(R)∗ and
V4 = D∗ × Z(R)∗ (we use V4 because the notation V2 has been used as the vertex
set V 1(C(�)); in fact, V4 is obtained from V2 by replacing each vertex of V2 with
an independent set of size s − 1). Note that � is an induced subgraph of �′, i.e.,
� = �′[V3]. Therefore, � is strongly connected when �′ is strongly connected. Now
we will prove �′ is strongly connected when � is strongly connected. It suffices to
show that there is a directed path from x to y for any x, y ∈ V (�′).

Assume that x ∈ V0. The case for y ∈ V0 ∪ V1 ∪ V3 is clear. If y = (a, b) ∈ V4,
since � is strongly connected, there exists b′ ∈ V (�) such b′ → b. Therefore, by
taking any x1 ∈ V1, we have x → x1 → (0, b′) → (a, b) = y. The case for x ∈ V1
is similar.

Assume that x = (0, b) ∈ V3. The case for y ∈ V0 ∪ V1 is clear. If y ∈ V3 then the
statement holds since � = �′[V3] is strongly connected. If y = (a, b′) ∈ V4, since �

is strongly connected, there exists a directed path b → b1 → b2 → · · · → bx → b′.
Therefore, we have x = (0, b) → (0, b1) → (0, b2) → · · · → (0, bx ) → (a, b′′) =
y. The case for x ∈ V4 is similar, and we omit the details. �


It is known that the zero-divisor graph �(R) of the ring R is strongly connected
if and only if Zl(R) = Zr (R) [16, Theorem 2.3]. Therefore, Theorem 1 (vi) gives a
combinatorial explanation of the following simple fact.

Corollary 1 Let R be a ring and D an integral domain. Then Zl(D× R) = Zr (D× R)

if and only if Zl(R) = Zr (R).

3 The HermitianMatrix of 0(D × R)

In this part, we investigate the Hermitian matrix of the zero-divisor graph �(D × R).
We start up with some basic definitions on matrices. For a square matrix X , the trace
tr(X) is the sum of all diagonal entries of X . Let A = (ai j ) be an m × n matrix and
B = (bi j ) a p × q matrix. The rank of A is denoted by rank(A). The Kronecker
product A × B is the pm × qn block matrix

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1,n B
...

. . .
...

am,1B · · · am,n B

⎞

⎟
⎠ .

We present some well-known properties on Kronecker product.

Lemma 3 [9] Let A, B, C and D are matrices with suitable size. Then we have

(i) (A ⊗ B)T = AT ⊗ BT ;
(ii) tr(A ⊗ B) = tr(A)tr(B);
(iii) rank(A ⊗ B) = rank(A)rank(B);
(iv) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).
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As usual, we write 0m,n for the zero matrix of size m × n, In for the identity matrix of
order n, and Jm,n for the all-one matrix of size m × n.

Assume that R is a ring with |R| = t and |Z(R)∗| = l, and D is an integral domain
with |D| = s. Suppose that � = �(R) is the zero-divisor graph of R with Hermitian
matrix H . According to the structure of �′ = �(D × R) obtained in Theorem 1, the
Hermitian matrix H ′ of �′ is

H ′ =

⎛

⎜
⎜
⎝

0t−l−1,t−l−1 Jt−l−1,s−1 0t−l−1,l 0t−l−1,l(s−1)
Js−1,t−l−1 0s−1,s−1 Js−1,l 0s−1,l(s−1)
0l,t−l−1 Jl,s−1 H H ⊗ J1,s−1

0l(s−1),t−l−1 0l(s−1),s−1 H ⊗ Js−1,1 0l(s−1),l(s−1)

⎞

⎟
⎟
⎠ .

It leads to the main result of this part.

Theorem 2 Let R be a ring with zero-divisor graph� and let D be an integral domain.
If�′ is the zero-divisor graph of D×R, then the rank of�′ is rank(�′) = 2rank(�)+2.
Furthermore, the spectrum of �′ is

Sp(�′) =
{

[0](l+1)(s−2)+t−l−2+2(l−r),±√
(s − 1)(t − 1), θ+

s (λ), θ−
s (λ) |

λ ∈ Sp(�), λ �= 0

}

,

where s = |D|, t = |R|, l = |Z(R)∗|, r = rank(�), θ+
s (λ) = (λ + √

(4s − 3)λ2)/2
and θ−

s (λ) = (λ − √
(4s − 3)λ2)/2.

Proof Assume that H is the Hermitian matrix of �. Since the elementary transforma-
tions of a matrix do not change its rank, we have

rank(H ′) = rank

⎛

⎜
⎜
⎝

0t−l−1,t−l−1 Jt−l−1,s−1 0t−l−1,l 0t−l−1,l(s−1)
Js−1,t−l−1 0s−1,s−1 Js−1,l 0s−1,l(s−1)
0l,t−l−1 Jl,s−1 H H ⊗ J1,s−1

0l(s−1),t−l−1 0l(s−1),s−1 H ⊗ Js−1,1 0l(s−1),l(s−1)

⎞

⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎝

0t−l−1,t−l−1 Jt−l−1,s−1 0t−l−1,l 0t−l−1,l(s−1)
Js−1,t−l−1 0s−1,s−1 0s−1,l 0s−1,l(s−1)
0l,t−l−1 0l,s−1 H H ⊗ J1,s−1

0l(s−1),t−l−1 0l(s−1),s−1 H ⊗ Js−1,1 0l(s−1),l(s−1)

⎞

⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎝

0 1 01,l 01,l(s−1)
1 0 01,l 01,l(s−1)
0l,1 0l,1 H H ⊗ J1,s−1

0l(s−1),1 0l(s−1),1 H ⊗ Js−1,1 0l(s−1),l(s−1)

⎞

⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎝

0 1 01,l 01,l
1 0 01,l 01,l
0l,1 0l,1 H H
0l,1 0l,1 H 0l,l

⎞

⎟
⎟
⎠
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= rank

⎛

⎜
⎜
⎝

0 1 01,l 01,l
1 0 01,l 01,l
0l,1 0l,1 0l,l H
0l,1 0l,1 H 0l,l

⎞

⎟
⎟
⎠

= 2rank(H) + 2.

Inwhat follows, we get the eigenvalues of H ′ by constructing eigenvectors. Assume
that r = rank(H), x1, . . . , xr are the eigenvectors of H corresponding to the nonzero
eigenvalues λ1, . . . , λr , and y1, . . . , yl−r are the eigenvectors of H corresponding
to the eigenvalue 0. For any positive integer m and 2 ≤ j ≤ m, let ηm( j) ∈ C

m

be the vector whose first entry is 1, j-th entry is −1 and other entries are 0. For
2 ≤ j1 ≤ t − l − 1, 2 ≤ j2 ≤ s − 1, 1 ≤ j3, j5 ≤ l − r , 2 ≤ j4 ≤ s − 1 and any
nonzero vector x ∈ C

l , by immediate calculations, all the vectors

⎛

⎜
⎜
⎝

ηt−l−1( j1)
0s−1,1
0l,1

0l(s−1),1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0t−l−1,1
ηs−1( j2)

0l,1
0l(s−1),1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1
y j3

0l(s−1),1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1,1
0l,1

x ⊗ ηs−1( j4)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1,1
0l,1

y j5 ⊗ Js−1,1

⎞

⎟
⎟
⎠ ,

are linear independent eigenvectors corresponding to the eigenvalue 0. Therefore, the
multiplicity of 0 is at least

(t − l − 2) + (s − 2) + (l − r) + l(s − 2) + (l − r)

= (l + 1)(s − 2) + t − l − 2 + 2(l − r).

Since |V (�′)| = (l + 1)(s − 1) + t − 1 and rank(�′) = 2r + 2, such eigenvectors
form a basis of the eigenspace of 0.

Now we deduce the remaining 2r +2 nonzero eigenvalues. For any nonzero eigen-

value λ of H , let θ+
s (λ) = λ+

√
(4s−3)λ2

2 and θ−
s (λ) = λ−

√
(4s−3)λ2

2 . Note that θ+
s (λ)

and θ−
s (λ) are both nonzero complex numbers if λ �= 0. For 1 ≤ j ≤ r , we construct

the vectors z j =

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1,1

θ+(λ j )x j
λ j x j ⊗ Js−1,1

⎞

⎟
⎟
⎠ . By immediate calculations, in view of Lemma

3, we have

H ′z j =

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1,1

θ+
s (λ j )Hx j + λ j (H ⊗ J1,s−1)(x j ⊗ Js−1,1)

θ+
s (λ j )(H ⊗ Js−1,1)x j

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0t−l−1,1
0s−1,1

(θ+
s (λ j )λ j + (s − 1)λ2j )x j
θ+
s (λ j )λ j (x j ⊗ Js−1,1)

⎞

⎟
⎟
⎠ .
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Note that θ+
s (λ j )λ j+(s−1)λ2j = (θ+

s (λ j ))
2. It leads to H ′z j = θ+

s (λ j )z j . Therefore,
θ+
s (λ j ) is a nonzero eigenvalue of H ′. Similarly, replacing θ+

s (λ j ) by θ−
s (λ j ), we

obtain that θ−
s (λ j ) is also a nonzero eigenvalue of H ′. There are totally 2r nonzero

eigenvalues. Suppose the remaining two nonzero eigenvalues are α and β. Note that
tr(H ′) = 0 and

tr(H ′2) = 2(s − 1)(t − 1) + (2s − 1)tr(H2).

By using the spectral moment of �′ [6, Page 52], we have

{
α + β + ∑r

j=1(θ
+
s (λ j ) + θ−

s (λ j )) = 0,
α2 + β2 + ∑r

j=1(θ
+
s (λ j )

2 + θ−
s (λ j )

2) = 2(s − 1)(t − 1) + (2s − 1)
∑r

j=1 λ2j .

It yields that α = √
(s − 1)(t − 1) and β = −√

(s − 1)(t − 1).
The proof is completed. �


4 Applications

In this part, we present some applications of Theorems 1 and 2 for both commutative
rings and non-commutative rings. Note that if R is a commutative ring then �(R) is an
undirected graph and every undirected graph can be viewed as a mixed graph, and the
adjacency matrix of�(R) and the Hermitian matrix of �(R) are coincident. Theorems
1 and 2 are applicable when R is commutative. Note that �(Zp) is a null graph for any
prime p. For a number a, recall that θ+

a (·) and θ−
a (·) are functions given in Theorem

2. For convenience, denote by θ±
a (±λ) the four numbers θ+

a (λ), θ−
a (λ), θ+

a (−λ) and
θ−
a (−λ). Since θ+

a and θ−
a are functions, the multiplication of them is defined as

the composition of functions. For convenience, denote by (θ±
a )k(±λ) the numbers

f1 f2 · · · fk(x) for f1, . . . , fk ∈ {θ+
a , θ−

a } and x ∈ {±λ}. It could be interpreted that
(θ±

a )k(±λ) represents totally 2k+1 numbers. We get the following result.

Lemma 4 For a prime p and an integer m ≥ 2, let Rm = Zp × Zp × · · · × Zp
︸ ︷︷ ︸

m

. If �m

is the zero-divisor graph of Rm, then we have

(i) |�m | = pm − (p − 1)m − 1;
(ii) �(�m) = pm−1 − 1;
(iii) δ(�m) = p − 1;
(iv) rank(�m) = 2m − 2;
(v) Sp(�m ) = {[0]pm−(p−1)m−2m+1, ±

√
(p − 1)(pm−1 − 1), (θ±

p )m−1− j (±
√

(p − 1)(p j − 1)) |
1 ≤ j ≤ m − 2

}
.

Proof We prove these statements by induction on m. Since �(R1) is a null graph, i.e.,
a graph with no vertex, Theorem 1 indicates that �(R2) = (p − 1)K1∇(p − 1)K1.
Therefore, it is clear that all the statements hold for m = 2. Next, assume that all the
statements hold for m = k and it suffices to show that they all hold for m = k + 1.
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Since �k+1 = �(Zp × Rk), Theorem 1 (ii) implies that

|�k+1| = (p − 1)(|�k | + 1) + pk − 1 = (p − 1)(pk − (p − 1)k − 1 + 1)

+pk − 1 = pk+1 − (p − 1)k+1 − 1.

Hence (i) holds. Theorem 1 (iii) implies that

�(�k+1) = max
{
p(�(�k) + 1), pk − 1

} = max
{
p
(
pk−1 − 1

)
, pk − 1

} = pk − 1,

and thus (ii) holds. Theorem1 (iv) indicates that δ(�k+1) = min{p−1, δ(�k)} = p−1,
thus (iii) holds. Theorem 2 means that

rank(�k+1) = 2rank(�k) + 2 = 2(2k − 2) + 2 = 2k+1 − 2,

and hence (iv) holds. From (i) and (iv), the multiplicity of 0 is obtained. By inductive
assumption, the nonzero eigenvalues of �k are

±
√

(p − 1)(pk−1 − 1) and
(
θ±
p

)k−1− j
(

±
√

(p − 1)(p j − 1)

)

,

for 1 ≤ j ≤ k − 2. Therefore, Theorem 2 implies that the nonzero eigenvalues of
�k+1 are

±
√

(p − 1)(pk − 1), θ±
p

(

±
√

(p − 1)
(
pk−1 − 1

)
)

and

θ±
p

((
θ±
p

)k− j−1
(

±
√

(p − 1)
(
p j − 1

)
))

,

for 1 ≤ j ≤ k − 2. Note that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ±
p

((
θ±
p

)k− j−1( ±
√

(p − 1)
(
p j − 1

)))

= (
θ±
p

)(k+1)− j−1( ±
√

(p − 1)
(
p j − 1

))
, for 1 ≤ j ≤ k − 2,

θ±
p

( ±
√

(p − 1)
(
pk−1 − 1

))

= (
θ±
p

)(k+1)− j−1( ±
√

(p − 1)
(
p j − 1)

)
, for j = (k + 1) − 2.

Therefore, the spectrum of �k+1 is as the form of (v) and thereby (v) holds.
The proof is completed. �


Recently, Mönius [14] gave the spectra of �(R3) and �(R4), in which the author
considered the zero-divisor graph as an undirected graph with loops. As an example,
we get the spectrum of �3 from Lemma 4.
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Corollary 2 The spectrum of �3 is

{

[0]3(p+1)(p−2), ±(p − 1)
√

(p + 1),
(p − 1)(1 ± √

4p − 3)

2
,
(1 − p)(1 ± √

4p − 3)

2

}

.

Remark 1 Though Lemma 4 only considers the case of Zp × Zp × · · · × Zp, the case
of Zp1

× Zp2
× · · · × Zpr is similar. For example, for two distinct primes p and q

with p > q, along the similar lines of the proof of Lemma 4, we have

{ |�(Zp × Zq)| = p + q − 2, �(�(Zp × Zq)) = p − 1, δ(�(Zp × Zq)) = q − 1,
Sp(�(Zp × Zq)) = {[0]p+q−4,±√

(p − 1)(q − 1)
}
.

Similarly, for three primes p1 , p2 , p3 with p1 > p2 > p3 , we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣�

(
Zp1

× Zp2
× Zp3

)∣
∣ = (p1 − 1)(p2 + p3 − 1) + p2 p3 − 1,

�
(
�
(
Zp1

× Zp2
× Zp3

)) = max{p1(p2 − 1), p2 p3 − 1},
δ
(
�
(
Zp1

× Zp2
× Zp3

)) = p3 − 1,
Sp

(
�
(
Zp1

× Zp2
× Zp3

))

=
{
[0](p1−1)(p2+p3−1)+p2 p3−7,±√

(p1 − 1)(p2 p3 − 1),√
(p2−1)(p3−1)(1±√

4p1−3)
2 ,

−√
(p2−1)(p3−1)(1±√

4p1−3)
2

} .

In fact, for any primes p1 , p2 , . . . , pr (not necessarily be distinct), the structure and
the spectrum of �(Zp1

× Zp2
× · · · × Zpr ) could be obtained easily according to

Theorems 1 and 2.

Since �(Zp2) = Kp−1 is the complete graph [10], we get the following result
immediately from Theorems 1 and 2.

Corollary 3 Let � be the zero-divisor graph of Zq × Zp2 for primes p and q. Then,

⎧
⎪⎨

⎪⎩

|�| = (q − 1)p + p2 − 1, �(�) = max{q(p − 2), p2 − 1},
δ(�) = min{q − 1, p − 2},
Sp(�) =

{
[0]pq+p2−3p−1,±√

(q − 1)(p2 − 1), [−1±√
4q−3

2 ]p−2,
(p−2)(1±√

4q−3)
2

}
.

Nowwe turn our eyes to non-commutative rings.We consider the non-commutative
ring U2(Zp) for prime p, where U2(Zp) is the set of 2 × 2 upper triangular matrices
with entries from Zp.

If A =
(
x y
0 z

)

∈ Zl(U2(Zp))
∗, then there exists B �= 0 such that AB = 0. Itmeans

that the columns of B are solutions of Ax = 0. Since B �= 0, we have det(A) = 0.
Therefore, xz = 0 and thus at least one of x and z is 0. If x = 0 and z �= 0 then y
could be any entry inZp, and thus there are totally (p−1)p choices of A. Similarly, if
x �= 0 and z = 0, there are also (p−1)p choices of A. If x = 0 and z = 0, then y �= 0,
and thus, there are p − 1 choices of A. Hence, |Zl(U2(Zp))

∗| = (p − 1)(2p + 1).
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It is clear that Zr (U2(Zp)) = Zl(U2(Zp)). To investigate the zero-divisor graph
�(U2(Zp)), we partition Z(U2(Zp))

∗ as V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, where

⎧
⎪⎪⎨

⎪⎪⎩

V1 =
{(

x 0
0 0

)

| x �= 0

}

, V2 =
{(

x y
0 0

)

| x �= 0, y �= 0

}

, V3 =
{(

0 0
0 z

)

| z �= 0

}

,

V4 =
{(

0 y
0 z

)

| z �= 0, y �= 0

}

, V5 =
{(

0 y
0 0

)

| y �= 0

}

.

Assume that ni = |Vi | for 1 ≤ i ≤ 5. It is clear that n1 = n3 = n5 = p − 1 and

n2 = n4 = (p − 1)2. For any

(
x 0
0 0

)

,

(
x ′ 0
0 0

)

∈ V1, since

(
x 0
0 0

)(
x ′ 0
0 0

)

=
(
x ′ 0
0 0

)(
x 0
0 0

)

=
(
xx ′ 0
0 0

)

�=
(
0 0
0 0

)

,

we conclude that there is no edge between any pair of vertices in V1. For any

(
x 0
0 0

)

∈

V1 and

(
x ′ y
0 0

)

∈ V2, since

(
x 0
0 0

)(
x ′ y
0 0

)

=
(
xx ′ xy
0 0

)

�=
(
0 0
0 0

)

and

(
x ′ y
0 0

)(
x 0
0 0

)

=
(
x ′x 0
0 0

)

�=
(
0 0
0 0

)

,

we conclude that there is no edges between V1 and V2. For any

(
x y
0 0

)

,

(
x ′ y′
0 0

)

∈
V2, since

(
x y
0 0

)(
x ′ y′
0 0

)

=
(
xx ′ xy
0 0

)

�=
(
0 0
0 0

)

and

(
x ′ y′
0 0

)(
x y
0 0

)

=
(
x ′x x ′y
0 0

)

�=
(
0 0
0 0

)

,

we conclude that there is no edge between any pair of vertices in V2. Thus V1 ∪ V2 is
an independent set. Similarly, V3 ∪ V4 is an independent set and V5 induces a clique.
By similar calculations, the structure of �(U2(Zp) could be obtained as the following
result. The tedious calculations are omitted.

Lemma 5 Let � be the zero-divisor graph of U2(Zp) for a prime p, and let π :
V (�) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be the partition defined above. Then, the edge set of
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Fig. 4 The zero-divisor graph �(U2(Zp))

� is E = E1,3 ∪ A4,1 ∪ A3,2 ∪ X2,4 ∪ A5, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1,3 = {{v1, v3} | v1 ∈ V1, v3 ∈ V3} ,

A4,1 = {(v4, v1) | v4 ∈ V4, v1 ∈ V1} ,

A3,2 = {(v3, v2) | v3 ∈ V3, v2 ∈ V2} ,

X2,4 =
{

{v2, v4} | xy′ + yz = 0, where v2 =
(
x y
0 0

)

and v4 =
(
0 y′
0 z

)}

∪
{

(v4, v2) | xy′ + yz �= 0, where v2 =
(
x y
0 0

)

and v4 =
(
0 y′
0 z

)}

,

A5 = {(v5, u) | v5 ∈ V5, u ∈ V1 ∪ V2} ∪ {(v, v5) | v ∈ V3 ∪ V4, v5 ∈ V5} .

Remark 2 Figure4reveals the structure of�(U2(Zp)), where the fat lines mean adding
all undirected edges between the two parts, the fat directed lines mean adding all
directed edges between the two parts, and the blue fat line represents the edge set X4
which contains both directed edges and undirected edges. For p = 2, the graph is
shown in Fig. 1 with V1 = {u1}, V2 = {u4}, V3 = {u3}, V4 = {u5} and V5 = {u2}.

From Lemma 5, we get the following result.

Lemma 6 For a prime p, let � be the zero-divisor graph of U2(Zp). Then, we have

(i) |�| = (p − 1)(2p + 1);
(ii) �+(�) = (p − 1)p, �−(�) = (p − 1)p and �#(�) = p − 1;
(iii) δ+(�) = δ−(�) = 0 and δ#(�) = p − 2.

Proof Inasmuch as |Z(U2(Zp))
∗| = (p−1)(2p+1), statement (i) holds. From Fig. 4,

the degrees of all vertices but those in V2 ∪V4 are known. In what follows, we discuss

the vertex in V2 ∪ V4. For v2 =
(
x y
0 0

)

and v4 =
(
0 y′
0 z

)

, if xy′ + yz = 0 then

y′ = −yz/x . By noticing z �= 0, there are p − 1 vertices in V4 adjacent to v2 by
undirected edges. Therefore, the degrees of vertices in � are present in Table1. The
result follows. �


Combining Lemma 6 and Theorem 1, the following result is obtained.
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Table 1 The degrees in
�(U2(Zp))

d+(v) d−(v) d#(v)

v ∈ V1 (p − 1)p 0 p − 1

v ∈ V2 (p − 1)p 0 p − 1

v ∈ V3 0 (p − 1)p p − 1

v ∈ V4 0 (p − 1)p p − 1

v ∈ V5 0 (p − 1)p p − 1

Corollary 4 For two primes p and q, let �′ be the zero-divisor graph of Zq ×U2(Zp).
Then, we have

(i) |�′| = p3 + (2q − 2)p2 − (q − 1)p − 1;
(ii) �+(�′) = (p−1)pq,�−(�′) = (p−1)pq and�#(�′) = max{pq−1, p3−1};
(iii) δ+(�′) = δ−(�′) = 0 and δ#(�′) = min{q − 1, p − 2}.

To obtain the Hermitian matrix of �(U2(Zp)), we should investigate the edges
between V2 and V4 further.

For vertices v2 =
(
x y
0 0

)

, v′
2 =

(
x ′ y′
0 0

)

∈ V2, we say that they have relation,

denoted by v2 �2 v′
2, if y/x = y′/x ′. It is clear that ‘�2’ is an equivalence relation, and

the equivalence classes are [1], [2], . . . , [p − 1], where [ j] =
{(

x y
0 0

)

| y/x = j

}

for 1 ≤ j ≤ p − 1. Hence V2 = ∪p−1
j=1 [ j]. Similarly, for two vertices v4 =

(
0 y
0 z

)

, v′
4 =

(
0 y′
0 z′

)

∈ V4, if y/z = y′/z′ then the two vertices have relation,

denoted by v4 �4 v′
4. It is clear that ‘�4’ is an equivalence relation, and the equiva-

lence classes are [1′], [2′], . . . , [(p − 1)′], where [ j ′] =
{(

0 y
0 z

)

| y/z = − j

}

for

1 ≤ j ≤ p−1. Hence, V4 = ∪p−1
j=1 [ j ′]. Thus, the undirected edge set between V2 and

V4 is E2,4 = ∪p−1
j=1

{{v2, v4} | v2 ∈ [ j], v4 ∈ [ j ′]}, and the directed edge set between
V2 and V4 is A2,4 = {(v4, v2) | v4 ∈ [ j], v2 ∈ [k], for 1 ≤ j, k ≤ p − 1 and j �= k}.
Hence, X2,4 = E2,4∪ A2,4. By Lemma 5, the Hermitian matrix of �(U2(Zp)) is given
by

H =

⎛

⎜
⎜
⎜
⎜
⎝

0p−1,p−1 0p−1,(p−1)2 Jp−1,p−1 −i Jp−1,(p−1)2 −i Jp−1,p−1

0(p−1)2,p−1 0(p−1)2,(p−1)2 −i J(p−1)2,p−1 B −i J(p−1)2,p−1
Jp−1,p−1 i Jp−1,(p−1)2 0p−1,p−1 0p−1,(p−1)2 i Jp−1,p−1

i J(p−1)2,p−1 B̄T 0(p−1)2,p−1 0(p−1)2,(p−1)2 i J(p−1)2,p−1
i Jp−1,p−1 i Jp−1,(p−1)2 −i Jp−1,p−1 −i Jp−1,(p−1)2 Jp−1,p−1 − Ip−1,p−1

⎞

⎟
⎟
⎟
⎟
⎠

,
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where B̄T is conjugate transpose of B and

B =

⎛

⎜
⎜
⎜
⎝

Jp−1,p−1 −i Jp−1,p−1 · · · −i Jp−1,p−1
−i Jp−1,p−1 Jp−1,p−1 · · · −i Jp−1,p−1

...
...

...

−i Jp−1,p−1 −i Jp−1,p−1 · · · Jp−1,p−1

⎞

⎟
⎟
⎟
⎠

.

Now we could deduce the spectrum of �.

Lemma 7 Let � be the zero-divisor graph of U2(Zp). The spectrum of � is

Sp(�) = {[0]2p(p−2), [−1]p−2, [(p − 1)
√
2]p−2, [−(p − 1)

√
2]p−2, μ j | 1 ≤ j ≤ 5},

where μ1, . . . , μ5 are the roots of the function

f (x) = x5 + (2 − p)x4 + ( − p4 + 2p3 − 5p2 + 8p − 4
)
x3 + (

p5 − 4p4 + 11p3

−22p2 + 22p − 8
)
x2 + (

2p6 − 8p5 + 16p4 − 24p3 + 26p2 − 16p + 4
)
x

−2p7 + 12p6 − 36p5 + 72p4 − 98p3 + 84p2 − 40p + 8.

Proof (Sketch of the proof) Suppose X = (X1, X2, X3, X4, X5)
T is a vector with

X1, X3, X5 ∈ C
p−1 and X2, X4 ∈ C

(p−1)2 .
Firstly, we construct the eigenvectors corresponding to the eigenvalue 0. For a

positive integer m ≥ 2 and 2 ≤ j ≤ m, recall that ηm( j) ∈ C
m is the vector with

first entry being 1, the j-th entry being −1, and all other entries being 0. Construct
the following four types of vectors:

(i) X1 = ηp−1( j) for 2 ≤ j ≤ p − 1 and X2 = X3 = X4 = X5 = 0;
(ii) X3 = ηp−1( j) for 2 ≤ j ≤ p − 1 and X1 = X2 = X4 = X5 = 0;
(iii) X1 = X3 = X4 = X5 = 0 and X2 = (X2,1, X2,2, · · · , X2,p−1), where X2,k =

ηp−1( j) for 1 ≤ k ≤ p − 1, 2 ≤ j ≤ p − 1 and X2,k′ = 0 for k′ �= k.
(iv) X1 = X2 = X3 = X5 = 0 and X4 = (X4,1, X4,2, · · · , X4,p−1)

T, where X4,k =
ηp−1( j) for 1 ≤ k ≤ p − 1, 2 ≤ j ≤ p − 1 and X4,k′ = 0 for k′ �= k.

By immediate calculations, all these vectors are linear independent eigenvectors of H
corresponding to 0. Hence, 0 is an eigenvalue of H withmultiplicity at least 2p(p−2).

Secondly, we construct the eigenvectors corresponding to −1. By taking X1 =
X2 = X3 = X4 = 0 and X5 = ηp−1( j) for 2 ≤ j ≤ p − 1, we have HX = −X .
Therefore, −1 is an eigenvalue of H with multiplicity at least p − 2.

Thirdly, we, respectively, construct the eigenvectors corresponding to λ where λ ∈
{±(p − 1)

√
2}. By immediate calculations, B B̄T /(p − 1) = (p − 3)Jp−1×p−1 ⊗

Jp−1×p−1 + 2Ip−1 ⊗ Jp−1,p−1. Therefore, we have

(B B̄T )(ηp−1( j) ⊗ Jp−1,1) = 2(p − 1)2ηp−1( j) ⊗ Jp−1,1 = λ2ηp−1( j) ⊗ Jp−1,1,
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for 2 ≤ j ≤ p − 1. Taking X1 = X3 = X5 = 0, X2 = ηp−1( j) ⊗ Jp−1,1 and
X4 = (B̄T ηp−1( j) ⊗ Jp−1,1)/λ, we have

HX =

⎛

⎜
⎜
⎜
⎜
⎝

0
(B B̄T ηp−1( j) ⊗ Jp−1,1)/λ

0
B̄T ηp−1( j) ⊗ Jp−1,1

0

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
ληp−1( j) ⊗ Jp−1,1)

0
B̄T ηp−1( j) ⊗ Jp−1,1

0

⎞

⎟
⎟
⎟
⎟
⎠

= λX .

Thus, λ is an eigenvalue of H with multiplicity at least p − 2.
At last, we obtain the other eigenvalues by using the well-known technique of

equitable partitions [8, Page 195]. To avoid being over length, we do not present the
details of the knowledge of equitable partitions but use it immediately. It is clear that
π : V (�) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is an equitable partition with the quotient matrix

Hπ =

⎛

⎜
⎜
⎝

0 0 p − 1 −(p − 1)2i −(p − 1)i
0 0 −(p − 1)i (p − 1) − (p − 1)(p − 2)i −(p − 1)i

p − 1 (p − 1)2i 0 0 (p − 1)i
(p − 1)i (p − 1) + (p − 1)(p − 2)i 0 0 (p − 1)i
(p − 1)i (p − 1)2i −(p − 1)i −(p − 1)2i p − 2

⎞

⎟
⎟
⎠ .

The theory of equitable partition implies that the other eigenvalues of � are those of
Hπ . By immediate calculations, the characteristic function of Hπ is

f (x) = x5 + (2 − p)x4 + ( − p4 + 2p3 − 5p2 + 8p − 4
)
x3 + (

p5 − 4p4 + 11p3

−22p2 + 22p − 8
)
x2 + (

2p6 − 8p5 + 16p4 − 24p3 + 26p2 − 16p + 4
)
x

−2p7 + 12p6 − 36p5 + 72p4 − 98p3 + 84p2 − 40p + 8.

Thus, the other five eigenvalues are exactly the roots of f (x).
The proof is completed. �

According to Theorem 2, the following result is obtained.

Corollary 5 For two primes p and q, let �′ be the zero-divisor graph of Zq ×U2(Zp).
Then, we have

Sp(�′) =
{

[0]m1,±
√

(q − 1)(p3 − 1),
[
θ±
q (−1)

]m2 ,

[
θ±
q

( ± (p − 1)
√
2
)]m2 , θ±

q (μ j ) | 1 ≤ j ≤ 5
}

,

where m1 = (2p + 1)(p − 1) − 6p + p3 + ((2p + 1)(p − 1) + 1)(q − 2) and
m2 = p − 2.
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