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For positive integers a, m and n, the graph aKm∇Cn is called the generalized wheel graph. 
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this paper, we obtain all distance integral generalized wheel graphs, which consist of an 
infinite class of graphs and 13 scattered graphs.
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1. Introduction

All graphs considered in this article are finite, undirected and simple. Let G = (V , E) be a connected graph with vertex set 
V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. The distance between vi and v j , denoted by dG (vi, v j) (or d(vi, v j)

for short), is defined as the length of a shortest path between them. The distance matrix of G , denoted by D(G), is the n × n
matrix whose (i, j)-entry is equal to dG (vi, v j) for 1 ≤ i, j ≤ n. Since D(G) is a real symmetric matrix, all its eigenvalues 
are real and can be listed as λ1 ≥ λ2 ≥ · · · ≥ λn . The multiset of such eigenvalues together with their multiplicities is called 
the distance spectrum of G , denoted by SpD(G) = {[λ1]m1 , . . . , [λs]ms } where λ1, . . . , λs are all distinct eigenvalues and mi is 
the multiplicity of λi . For more details about the distance matrix we refer the readers to [2].

As usual, we always write Cn and Kn for the cycle and the complete graph of corresponding orders. For two graphs G and 
H with disjoint vertex sets, the union G ∪ H is the graph with vertex set V = V (G) ∪ V (H) and edge set E = E(G) ∪ E(H). 
The union of k copies of G is denoted by kG . The join G∇H is the graph obtained from G ∪ H by adding all edges between 
V (G) and V (H). The graph W (n) = K1∇Cn is called the wheel graph and the graph GW (a, m, n) = aKm∇Cn is called the 
generalized wheel graph. Clearly, a wheel graph is just a special case of generalized wheel graphs, i.e., W (n) = GW (1, 1, n).

A graph is called integral if all eigenvalues of its adjacency matrix are integers. The problem to characterize integral 
graphs dates back to 1973, when Harary and Schwenk [7] posed the question “Which graphs have integral spectra?”. This 
problem initiated a significant investigation among algebraic graph theorists, trying to construct and classify integral graphs. 
Although this problem is easy to state, it turns out to be extremely hard. It has been attacked by many mathematicians 
during the past 40 years [1,3,5,6,10,14], and it is still wide open. With respect to distance matrix, a connected graph G
is called distance integral if all eigenvalues of its distance matrix are integers. Although there is a huge amount of papers 
that study distance spectrum of graphs and their applications to distance energy of graphs, there are few researches on 
distance integral graph. In 2010, Ilić [9] determined the distance eigenvalues of integral circulant graphs and proved that 
these graphs are also distance integral. In 2011, Renteln [12] characterized the integral Cayley graphs over the Coxeter group. 

* Corresponding author.
E-mail address: lulugdmath@163.com (L. Lu).
https://doi.org/10.1016/j.disc.2022.113258
0012-365X/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2022.113258
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2022.113258&domain=pdf
mailto:lulugdmath@163.com
https://doi.org/10.1016/j.disc.2022.113258


J. Lu, W. Liu and L. Lu Discrete Mathematics 346 (2023) 113258
In 2015, Pokorný et al. [11] gave some conditions for the distance integrality on graphs similar to complete split graphs. 
Very recently, Huang [8] gave some necessary and sufficient conditions for the distance integrality of Cayley graphs over 
dihedral groups. However, most of these works only consider Cayley graphs, whose distance eigenvalues could be expressed 
by using irreducible characters of the corresponding groups. For general graphs, it is not easy to determine whether they 
are distance integral or not. Therefore, we would like to investigate some general distance integral graphs. Note that the 
distance eigenvalues of the join of two regular graphs G1 and G2 are determined by the adjacency eigenvalues of G1 and 
G2. It seems to be a good start to investigate the distance integrality of G1∇G2. Up to now, the distance integrality of 
G1∇G2 is solved only when G1 and G2 are the disjoint unions of complete graphs or empty graphs. To move a step on, we 
would like to study G1∇G2 when G1 is the union of complete graphs but G2 is a general graph. As a start, we make a lot 
of examples and the graph aKm∇Cn , the so-called generalized wheel graph, comes to our eyes. In this paper, we completely 
determine all integral generalized wheel graphs.

2. Distance spectrum of G W (a, m, n)

In this part, we would like to give the distance spectrum of GW (a, m, n). Note that GW (a, m, n) = aKm∇Cn is the join 
of two regular graphs. The following result is usable.

Lemma 1 ([13]). For i = 1, 2, let Gi be an ri -regular graph with ni vertices. If the eigenvalues of the adjacency matrix of Gi are given
by λ(i)

1 = ri ≥ · · · ≥ λ
(i)
ni

, then the distance spectrum of G1∇G2 consists of the eigenvalues −λ
(i)
j − 2 for i = 1, 2 and j = 2, 3, · · · , ni , 

and two more simple eigenvalues

n1 + n2 − 2 − r1 + r2

2
±

√(
n1 − n2 − r1 − r2

2

)2

+ n1n2.

According to Lemma 1, we need the adjacency spectra of aKm and Cn to obtain the distance spectrum of GW (a, m, n).

Lemma 2 ([4]). The adjacency spectrum of aKm is 
{[m − 1]a, [−1]a(n−1)

}
and the adjacency spectrum of Cn is {2 cos(2π j/n) | 1 ≤

j ≤ n − 1}.

Combining Lemmas 1 and 2, we get the distance spectrum of GW (a, m, n) immediately.

Theorem 1. For positive integers a, m and n ≥ 3, the distance spectrum of GW (a, m, n) is given by

{λ1, λ2, [−m − 1]a−1, [−1]a(m−1),−2 cos (2π j/n) − 2 | 1 ≤ j ≤ n − 1},
where λ1,2 = (2a−1)m+2n−5

2 ± 1
2

√
((2a − 1)m − 2n + 3)2 + 4amn.

From Theorem 1, we get the distance spectrum of GW (1, m, n)

Corollary 1. For positive integer m and n ≥ 3, the distance spectrum of GW (1, m, n) is given by

{β1, β2, [−1]m−1,−2 cos (2π j/n) − 2 | 1 ≤ j ≤ n − 1},
where β1,2 = m+2n−5

2 ± 1
2

√
(m − 2n + 3)2 + 4mn.

3. Distance integral generalized wheel graphs

In this part, we completely determine all distance integral generalized wheel graphs. We first consider GW (a, m, n) for 
the special case a = 1.

Lemma 3. The generalized wheel graph GW (1, m, n) is distance integral if and only if one of the following holds
(i) n = 3 and m ≥ 1;
(ii) n = 6 and m = 4;
(iii) n = 6 and m = 14.

Proof. From Corollary 1, the distance spectrum of GW (1, m, n) consists of [−1]m−1, −2 cos(2π j/n) − 2 and two simple 
eigenvalues

m + 2n − 5 ± 1√
(m − 2n + 3)2 + 4mn, (1)
2 2

2
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where 1 ≤ j ≤ n − 1. Since m + 2n − 5 ≡ m − 2n + 3 (mod 2), we have m + 2n − 5 ≡ (m − 2n + 3)2 + 4mn (mod 2). Therefore, 
the numbers in (1) are integers if and only if (m − 2n + 3)2 + 4mn is a perfect square. Thus, the graph GW (1, m, n) is 
distance integral if and only if −2 cos (2π j/n) is integral for any 1 ≤ j ≤ n − 1 and (m − 2n + 3)2 + 4mn is a perfect square. 
By immediate calculations, −2 cos (2π j/n) is integral for any j and (m − 2n + 3)2 + 4mn is a perfect square when either (i), 
(ii) or (iii) holds. In what follows, we consider the other side.

It is clear that −2 cos (2π j/n) is integral for any 1 ≤ j ≤ n − 1 if and only if n ∈ {3, 4, 6}. Denote by t = (m − 2n + 3)2 +
4mn. If n = 3 then t = (m − 3)2 + 12m = (m + 3)2. Therefore, the graph Km∇C3 is always distance integral for any m. If 
n = 4 then t = (m − 5)2 + 16m = m2 + 6m + 25 = (m + 3)2 + 16. Assume that t = c2. We have (m + 3)2 + 16 = c2, which 
is equivalent to 16 = (c + (m + 3)) (c − (m + 3)). It leads to c = 5 and m + 3 = 3, or c = 4 and m + 3 = 0, which are 
all impossible. If n = 6 then t = (m − 9)2 + 24m = (m + 3)2 + 72. Assume that t = c2. We have (m + 3)2 + 72 = c2, which 
indicates 72 = (c + (m + 3)) (c − (m + 3)). It leads to either c = 19 and m +3 = 17, c = 11 and m +3 = 7, or c = 9, m +3 = 3. 
The first case leads to m = 14, the second one leads to m = 4, and the last one is impossible.

The proof is completed. �
In what follows, we turn our eyes on the generalized wheel graphs GW (a, m, n) with a ≥ 2.

Lemma 4. For positive integers a, m, n with a ≥ 2 and n ≥ 3, the generalized wheel graph GW (a, m, n) is distance integral if and only 
if the integers a, m, n satisfy one of the following conditions
(i) n = 3 and

m = α2 − 6α − 36a (a − 1)

2α(2a − 1)2

for some α ∈N with α > 6a.
(ii) n = 4 and

m = α2 − 2 (5 − 2a)α − 16a (6a − 5)

2α(2a − 1)2
,

for some α ∈N with α ≥ max{8a + 1, 
√

16a(6a − 5)}, or

m = −α2 − 2 (5 − 2a)α + 16a (6a − 5)

2α(2a − 1)2
,

for some α ∈N with 
√

16a (6a − 5) ≤ α < 12a − 10.
(iii) n = 6 and

m = α2 − 2 (9 − 6a)α − 72a (4a − 3)

2α(2a − 1)2
,

for some α ∈N with α ≥ max{12a + 1, 
√

72a (4a − 3)}, or

m = −α2 − 2 (9 − 6a)α + 72a (4a − 3)

2α(2a − 1)2
,

for some α ∈N with 
√

72a (4a − 3) ≤ α < 24a − 18.

Proof. From Theorem 1, the distance spectrum of GW (a, m, n) consists of [−m − 1]a−1, [−1]a(m−1) , −2 cos(2π j/n) − 2 and 
two simple eigenvalues

(2a − 1)m + 2n − 5

2
± 1

2

√
((2a − 1)m − 2n + 3)2 + 4amn, (2)

where 1 ≤ j ≤ n − 1. Since (2a − 1)m + 2n − 5 ≡ (2a − 1)m − 2n + 3 (mod 2), we have (2a − 1)m + 2n − 5 ≡ ((2a − 1)m −
2n + 3)2 + 4amn (mod 2). Therefore, the numbers in (2) are integers if and only if ((2a − 1)m − 2n + 3)2 + 4amn is a perfect 
square. Thus, the graph GW (a, m, n) is distance integral if and only if 2 cos (2π j/n) is integral for any 1 ≤ j ≤ n − 1 and 
((2a − 1)m − 2n + 3)2 +4amn is a perfect square. By immediate calculations, if either (i), (ii) or (iii) holds, then 2 cos (2π j/n)

is integral for any j and ((2a − 1)m − 2n + 3)2 + 4amn is a perfect square. In what follows, we consider the other side.
It is clear that −2 cos (2π j/n) is integral for any 1 ≤ j ≤ n − 1 if and only if n ∈ {3, 4, 6}. Denote by t =

((2a − 1)m − 2n + 3)2 + 4amn. It needs to divide the following cases to discuss.
Case 1. n = 3.

In this case, we have t = (2a − 1)2m2 + 6m + 9 > 9. Assume that t = c2 for some positive integer c > 3. We have 
(2a − 1)2m2 + 6m + 9 = c2, and thus m = −3±

√
(2a−1)2c2−36a(a−1)

2 . Since m is an integer, we have (2a − 1)2c2 − 36a (a − 1) =

(2a−1)

3
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p2 is a perfect square for some p ≥ 0. It leads to m = −3±p
(2a−1)2 and 36a (a − 1) = (2a − 1)2c2 − p2. Therefore, 36a(a−1)

(2a−1)c−p =
(2a − 1) c + p = α is a positive integer. It follows that{

α = (2a − 1) c + p,

36a (a − 1) = (2a − 1)αc − αp.
(3)

Adding α times of the first equation in (3) to the second one, we get α2 + 36a (a − 1) = 2 (2a − 1)αc. It means c =
α2+36a(a−1)

2(2a−1)α , and thus p = α2−36a(a−1)
2α . Therefore, we have m = −3+p

(2a−1)2 = α2−6α−36a(a−1)

2α(2a−1)2 or m = −3−p
(2a−1)2 = −α2−6α+36a(a−1)

2α(2a−1)2 . 

Note that α ≥ √
36a(a − 1) due to p ≥ 0. Moreover, if m = α2−6α−36a(a−1)

2α(2a−1)2 then we get α > 6a according to m > 0; if 

m = −3−p
(2a−1)2 = −α2−6α+36a(a−1)

2α(2a−1)2 then we have α < 6a − 6 according to m > 0 which contradicts α ≥ √
36a(a − 1) > 6a − 6. 

Thus, (i) holds.
Case 2. n = 4.

In this case, we have t = (2a − 1)2m2 + (10 − 4a)m + 25. Assume that t = c2 for some integer c ≥ 0. We have 
(2a − 1)2m2 + (10 − 4a)m + 25 = c2, and thus m = (2a−5)±

√
(2a−1)2c2−16a(6a−5)

(2a−1)2 . Since m is an integer, we have (2a − 1)2c2 −
16a (6a − 5) = p2 is a perfect square for some p ≥ 0. It leads to m = (2a−5)±p

(2a−1)2 and 16a (6a − 5) = (2a − 1)2c2 − p2. Therefore, 
16a(6a−5)
(2a−1)c−p = (2a − 1) c + p = α is a positive integer. It follows that{

α = (2a − 1) c + p,

16a (6a − 5) = (2a − 1)αc − αp.
(4)

Adding α times of the first equation in (4) to the second one, we get α2 + 16a (6a − 5) = 2 (2a − 1)αc. It means 
c = α2+16a(6a−5)

2(2a−1)α , and thus p = α2−16a(6a−5)
2α . Therefore, we have m = (2a−5)+p

(2a−1)2 = α2+2(2a−5)α−16a(6a−5)

2α(2a−1)2 or m = (2a−5)−p
(2a−1)2 =

−α2+2(2a−5)α+16a(6a−5)

2α(2a−1)2 . Note that α ≥ √
16a(6a − 5) due to p ≥ 0. Moreover, if m = α2+2(2a−5)α−16a(6a−5)

2α(2a−1)2 then we get 

α > 8a according to m > 0; if m = (2a−5)−p
(2a−1)2 = −α2+2(2a−5)α+16a(6a−5)

2α(2a−1)2 then we have α < 12a − 10 according to m > 0. 
Thus, (ii) holds.
Case 3. n = 6.

In this case, we have t = (2a − 1)2m2 +(18 −12a) +81. Assume that t = c2 for some integer c ≥ 0. We have (2a − 1)2m2 +
(18 − 12a)m + 81 = c2, and thus m = (6a−9)±

√
(2a−1)2c2−72a(4a−3)

(2a−1)2 . Since m is an integer, we have (2a − 1)2c2 − 72a (4a − 3) =
p2 is a perfect square for some p ≥ 0. It leads to m = (6a−9)±p

(2a−1)2 and 72a (4a − 3) = (2a − 1)2c2 − p2. Therefore, 72a(4a−3)
(2a−1)c−p =

(2a − 1) c + p = α is a positive integer. It follows that{
α = (2a − 1) c + p,

72a (4a − 3) = (2a − 1)αc − αp.
(5)

Adding α times of the first equation in (5) to the second one, we get α2 + 72a (4a − 3) = 2 (2a − 1)αc. It means 
c = α2+72a(4a−3)

2(2a−1)α , and thus p = α2−72a(4a−3)
2α . Therefore, we have m = (6a−9)+p

(2a−1)2 = α2+2(6a−9)α−72a(4a−3)

2α(2a−1)2 or m = (6a−9)−p
(2a−1)2 =

−α2+2(6a−9)α+72a(4a−3)

2α(2a−1)2 . Note that α ≥ √
72a(4a − 3) due to p ≥ 0. Moreover, if m = α2+2(6a−9)α−72a(4a−3)

2α(2a−1)2 then we get 

α > 12a according to m > 0; if m = (6a−9)−p
(2a−1)2 = −α2+2(6a−9)α+72a(4a−3)

2α(2a−1)2 then we have α < 24a − 18 according to m > 0. 
Thus, (iii) holds. �

Though Lemma 4 gives the necessary and sufficient condition for GW (a, m, n) to be distance integral when a ≥ 2, it is 
hard to determine which numbers a, m, n could satisfy the conditions (i) (ii) or (iii). We even do not know whether there 
exist such integers or not. Therefore, we need to do further research to investigate the distance integrality of GW (a, m, n).

Corollary 2. Let a ≥ 2, m ≥ 1 and n ≥ 3 be positive integers such that the graph GW (a, m, n) is distance integral. It holds that
(i) if n = 3 then m ≤ 2;
(ii) if n = 4 then m ≤ 6;
(iii) if n = 6 then m ≤ 20.

Proof. If n = 3, Lemma 4 indicates m = α2−6α−36a(a−1)

2α(2a−1)2 for some α ∈ N with α > 6a. Since m is an integer, we have 

2α(2a − 1)2 | α2 − 6α − 36a (a − 1). If α is even, then 2α | α2 − 6α and thus 2α | 36a (a − 1). Therefore, we have α |
18a (a − 1). If α is odd then gcd(α, 4) = 1 and thus α | 9a(a − 1) due to α | 36a(a − 1). Hence we always have α | 18a(a − 1)

and thus α ≤ 18a(a − 1) because 18a(a − 1) > 0.
4
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Suppose to the contrary that m ≥ 3. We have α2 − 6α − 36a2 + 36a ≥ 6(2a − 1)2α. It yields α ≥ 12a2 − 12a + 6 +
(12a − 6)

√
a2 − a + 1 or α ≤ 12a2 − 12a + 6 − (12a − 6)

√
a2 − a + 1. If the former occurs, we have

α ≥ 12a2 − 12a + 6 + (12a − 6)
√

a2 − a + 1
≥ 12a2 − 12a + 6 + (12a − 6) (a − 1)

= 24a2 − 30a + 12 > 18a(a − 1),

which contradicts α ≤ 18a (a − 1). If the latter occurs, we have

α ≤ 12a2 − 12a + 6 − (12a − 6)
√

a2 − a + 1
≤ 12a2 − 12a + 6 − (12a − 6) (a − 1) = 6a,

which contradicts α > 6a. Thus, (i) holds.
If n = 4, it should be divided to two cases to discuss according to Lemma 4.

Case 1. m = α2−2(5−2a)α−16a(6a−5)

2α(2a−1)2 for some α ∈N with α > 8a and α ≥ √
16a (6a − 5).

Since m is an integer, we have 2α(2a − 1)2 | α2 − 2 (5 − 2a)α − 16a (6a − 5). If α is even then 2α | α2 − 2 (5 − 2a)α. 
It means 2α | 16a (6a − 5). It leads to α | 8a (6a − 5). If α is odd then gcd(α, 16) = 1 and thus α | a(6a − 5) due to α |
16a(6a − 5). Hence we always have α | 8a(6a − 5) and thus α ≤ 8a (6a − 5) because 8a (6a − 5) > 0.

Suppose to the contrary that m ≥ 7. We have α2 − 2 (5 − 2a)α − 96a2 + 80a ≥ 14(2a − 1)2α. It yields α ≥ 28a2 − 30a +
12 + (4a − 2)

√
49a2 − 56a + 36 or α ≤ 28a2 − 30a + 12 − (4a − 2)

√
49a2 − 56a + 36. If the former occurs, we have

α ≥ 28a2 − 30a + 12 + (4a − 2)
√

49a2 − 56a + 36
> 28a2 − 30a + 12 + (4a − 2) (7a − 4)

= 56a2 − 60a + 20 > 8a (6a − 5) ,

which contradicts α ≤ 8a (6a − 5). If the latter occurs, we have

α ≤ 28a2 − 30a + 12 − (4a − 2)
√

49a2 − 56a + 36
< 28a2 − 30a + 12 − (4a − 2) (7a − 4) = 4,

which contradicts α ≥ √
16a (6a − 5).

Case 2. m = −α2−2(5−2a)α+16a(6a−5)

2α(2a−1)2 for some α ∈N with 
√

16a (6a − 5) ≤ α < 12a − 10.

Suppose to the contrary m ≥ 7. We have −α2 − 2 (5 − 2a)α + 96a2 − 80a ≥ 14(2a − 1)2α. It yields −28a2 + 30a − 12 −
(4a − 2)

√
49a2 − 56a + 36 ≤ α ≤ −28a2 + 30a − 12 + (4a − 2)

√
49a2 − 56a + 36. We have

α ≤ −28a2 + 30a − 12 + (4a − 2)
√

49a2 − 56a + 36
< −28a2 + 30a − 12 + (4a − 2) (7a − 3) = 4a − 6
<

√
16a (6a − 5),

which contradicts α ≥ √
16a (6a − 5).

Thus, (ii) holds.
If n = 6, it also should be divided to two cases to discuss according to Lemma 4.

Case 1. m = α2−2(9−6a)α−72a(4a−3)

2α(2a−1)2 for some α ∈N with α ≥ max{12a + 1, 
√

72a (4a − 3)}.

Since m is an integer, we have 2α(2a − 1)2 | α2 − 2 (9 − 6a)α − 72a (4a − 3). If α is even, then 2α | α2 − 2 (9 − 6a)α. 
It means 2α | 72a (4a − 3). It leads to α | 36a (4a − 3). If α is odd, then gcd(α, 8) = 1 and thus α | 9a(4a − 3) due to 
α | 72a (4a − 3). Hence we always have α | 36a(4a − 3) and thus α ≤ 36a (4a − 3) because 36a(4a − 3) > 0.

Suppose to the contrary that m ≥ 21. We have α2 − 2 (9 − 6a)α − 288a2 + 216a ≥ 42(2a − 1)2α. It yields α ≥ 84a2 −
90a + 30 + (12a − 6)

√
49a2 − 56a + 25 or α ≤ 84a2 − 90a + 30 − (12a − 6)

√
49a2 − 56a + 25. If the former occurs, we have

α ≥ 84a2 − 90a + 30 + (12a − 6)
√

49a2 − 56a + 25
> 84a2 − 90a + 30 + (12a − 6) (7a − 4)

= 168a2 − 180a + 54 > 36a (4a − 3) ,

which contradicts α ≤ 36a (4a − 3). If the latter occurs, we have

α ≤ 84a2 − 90a + 30 − (12a − 6)
√

49a2 − 56a + 25
< 84a2 − 90a + 30 − (12a − 6) (7a − 4)

= 6 < 12a,

which contradicts α > 12a.
Case 2. m = −α2−2(9−6a)α+72a(4a−3)

2 for α ∈N , 
√

72a (4a − 3) ≤ α < 24a − 18.

2α(2a−1)

5
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Table 1
The case for n = 3.

m t corresponding equations suitable solution

1 (2a − 1)2 + 15 (c + (2a − 1)) (c − (2a − 1)) = 15 c = 8,a = 4
2 (4a − 2)2 + 21 (c + (4a − 2)) (c − (4a − 2)) = 21 c = 11,a = 3

Table 2
The case for n = 4.

m t corresponding equations suitable solution

1 (2a − 2)2 + 32 (c + (2a − 2)) (c − (2a − 2)) = 32 c = 6,a = 2
2 (4a − 3)2 + 40 (c + (4a − 3)) (c − (4a − 3)) = 40 c = 11,a = 3
6 (12a − 7)2 + 72 (c + (12a − 7)) (c − (12a − 7)) = 72 c = 19,a = 2

Table 3
The case for n = 6.

m t corresponding equations suitable solution

1 (2a − 4)2 + 84 (c + (2a − 4)) (c − (2a − 4)) = 84

{
c = 22,a = 12

c = 10,a = 4

2 (4a − 5)2 + 96 (c + (4a − 5)) (c − (4a − 5)) = 96 c = 25,a = 7
3 (6a − 6)2 + 108 (c + (6a − 6)) (c − (6a − 6)) = 108 c = 12,a = 2
5 (10a − 8)2 + 132 (c + (10a − 8)) (c − (10a − 8)) = 132 c = 34,a = 4
10 (20a − 13)2 + 192 (c + (20a − 13)) (c − (20a − 13)) = 192 c = 49,a = 3

Suppose to the contrary m ≥ 21. We have −α2 − 2 (9 − 6a)α + 288a2 − 216a ≥ 42(2a − 1)2α. It yields −84a2 + 90a −
30 − (12a − 6)

√
49a2 − 56a + 25 ≤ α ≤ −84a2 + 90a − 30 + (12a − 6)

√
49a2 − 56a + 25. We have

α ≤ −84a2 + 90a − 30 + (12a − 6)
√

49a2 − 56a + 25
< −84a2 + 90a − 30 + (12a − 6) (7a − 3)

= 12a − 12 <
√

72a (4a − 3),

which contradicts α ≥ √
72a (4a − 3).

Thus, (iii) holds. �
Combining Lemma 4 and Corollary 2, we get the following result.

Lemma 5. For positive integers a ≥ 2, m ≥ 1 and n ≥ 3, the graph GW (a, m, n) is distance integral if and only if the ordered triple 
[a, m, n] ∈ S, where

S = {[4,1,3], [3,2,3], [2,1,4], [3,2,4], [2,6,4], [4,1,6], [12,1,6], [7,2,6], [2,3,6], [4,5,6], [3,10,6]} .

Proof. According to Theorem 1, one can easily verify that GW (a, m, n) is distance integral when [a, m, n] ∈ S by immediate 
calculations. In what follows, we show the necessity.

Assume GW (a, m, n) is distance integral. We have t = [(2a − 1)m − 2n + 3]2 + 4amn = c2 is a perfect square according 
to Theorem 1. Moreover, Lemma 4 implies that n ∈ {3, 4, 6}.

If n = 3 then (2a − 1)m2 + 6m + 9 = c2. Note that Corollary 2 indicates m ≤ 2. If m = 1, then c2 = (2a − 1)2 + 15, that is 
15 = (c + (2a − 1)) (c − (2a − 1)). It leads to c + (2a − 1) = 15 and c − (2a − 1) = 1, or c + (2a − 1) = 5 and c − (2a − 1) = 3. 
The former case yields c = 8 and a = 4, and the latter case yields c = 4 and a = 1 which contradicts a ≥ 2. Hence we have 
c = 8 and a = 4. If m = 2, then c2 = (4a − 2)2 + 21, that is 21 = (c + (4a − 2)) (c − (4a − 2)). It leads to c + (4a − 2)) = 21
and c − (4a − 2) = 1, or c + (4a − 2) = 7 and c − (4a − 2) = 3. The former case indicates c = 11 and a = 3, and the latter case 
indicates c = 5 and a = 1, which contradicts a ≥ 2. Hence we have c = 11 and a = 3. The critical parts of the proof could 
be presented in Table 1. Similarly, we can deal with the cases of n = 4 and n = 6. To avoid tedious repetitive processes, we 
omit the details and only present the key steps in Tables 2 and 3. �

Combining Lemmas 3 and 5, the main result is obtained.

Theorem 2. The generalized wheel graph GW (a, m, n) is distance integral if and only if one of the followings holds
(i) a = 1, n = 3 and m ≥ 1;
(2) the ordered triple [a, m, n] ∈ S where

S = {[1,4,6], [1,14,6], [4,1,3], [3,2,3], [2,1,4], [3,2,4], [2,6,4], [4,1,6], [12,1,6], [7,2,6], [2,3,6], [4,5,6], [3,10,6]}.
6
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