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Abstract
In this paper, we define signed zero-divisor graphs over commutative rings and inves-
tigate the interplay between the algebraic properties of the rings and the combinatorial
properties of their corresponding signed zero-divisor graphs. We investigate the struc-
ture of signed zero-divisor graphs, the relation between ideals and signed zero-divisor
graphs, and the adjacency matrices and the spectra of signed zero-divisor graphs.
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1 Introduction

The zero-divisor graphs are firstly defined over commutative finite rings to study the
interplay between graph-theoretical properties of such graphs and ring-theoretical
properties of the corresponding rings. The definition of zero-divisor graphs was ini-
tiated by Beck [4], who defined the zero-divisor graph �(R) of a commutative ring
R to be the graph with vertex set R and two vertices x and y are adjacent if and
only if xy = 0. This concept was modified by Anderson and Livingston [2], who
defined the zero-divisor graph of a commutative ring R to be the graph with vertex
set Z(R)∗ = Z(R) \ {0}, which is the set of non-zero zero-divisors, and two vertices
x and y are adjacent if and only if xy = 0. This definition has been favored by many
mathematicians and many significant contributions are obtained [1, 3, 13, 14].
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For a commutative ring R and a subset S ⊆ R, denote by S∗ = S \ {0} and
S = R \ S. Denote by R1 ⊕ R2 the direct sum of two rings R1 and R2. An element
r ∈ R is nilpotent if there exists a positive integer k such that rk = 0. Denote byNil(R)

the set of nilpotent elements of R. Clearly, Nil(R) ⊆ Z(R). Note that the classical
zero-divisor graphs do not reveal the particularity of nilpotent elements.Wewould like
to define a new graph, the signed zero-divisor graph, over a commutative ring which
associates not only with the zero-divisors but also with the nilpotent elements of the
ring. Before giving this definition, it needs to give another definition of zero-divisor
graphs, which is a little different from that given by Anderson and Livingston.

Definition 1.1 Let R be a finite commutative ring. The zero-divisor graph �(R) is the
graph with vertex set Z(R)∗ and edge set {{u, v} | u, v ∈ Z(R)∗, uv = 0}, where u
and v may be the same.

In this definition, the zero-divisor graphs may contain loops. For a graph �, which
may contain loops, the reduced graph �̃ of � is the simple graph obtained from � by
deleting all loops.Note that the reduced zero-divisor graph �̃(R) is just the zero-divisor
graph defined by Anderson and Livingston [2].

Next, we recall some definitions on signed graphs. A signed graph � = (�, σ )

consists of a graph � and a sign function σ : E(�) → {±1} on the edge set E(�) of �.
The graph � is the underlying graph of �. If two vertices u and v are adjacent in �,
thenwe denote by u ∼ v. An edge e is positive if σ(e) = 1, and negative if σ(e) = −1.
The sign of a walk P = u1u2 · · · uk is σ(P) = ∏k−1

i=1 σ(uiui+1). A walk P is positive
if σ(P) = 1, and negative if σ(P) = −1. The signed graph is balanced if all its cycles
are positive. The subgraph of � obtained from � by deleting all positive edges and
then deleting all isolate vertices is the negative subgraph of �, denoted by �−. The
positive subgraph �+ could be defined similarly. If � = �+, then � is completely
positive (or CP for short). If � = �−, then � is completely negative (or CN for
short). There are many insightful works on signed graphs, see, for example, [5, 10–12,
15]. For other notations in graph theory, one may refer to [7]. The adjacency matrix
A(�) of a signed graph � = (�, σ ) is the square matrix indexed by the vertices of �,
and its (u, v)-entry is σ(uv) if u ∼ v and 0 otherwise. The nullity and characteristic
polynomial of � are, respectively, the nullity and characteristic polynomial of A(�).
Since A(�) is a symmetric real matrix, all its eigenvalues are real and could be listed
as λ1 ≥ λ2 ≥ · · · ≥ λn . These eigenvalues are called eigenvalues of�. The collection
of all eigenvalues together with their multiplicities is the spectrum of �, denoted by
Sp(�) = {[λ1]m1, . . . , [λs]ms }, where λ1, . . . , λs are all distinct eigenvalues of� and
mi is the multiplicity of λi for 1 ≤ i ≤ s. For more details on spectra of graphs, one
may refer to [8].

Now we could give the definition of signed zero-divisor graphs.

Definition 1.2 Let R be a finite commutative ring. The signed zero-divisor graph
�(R) = (�(R), σ ) is the signed graph with underlying graph �(R) and sign function
σ : E(�(R)) → {±1} defined by σ(uv) = −1 if u, v ∈ Nil(R) and 1 otherwise.

Remark 1.3 Since �(R) may contain loops, the signed graph �(R) may also contain
loops. The reduced signed zero-divisor graph �̃(R) is the signed graph obtained from
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�(R) by deleting all loops. The underlying graph of �̃(R) is just �̃(R). The negative
subgraph �−(R) is just the subgraph of �(R) induced by Nil(R)∗, but �+(R) may
be not an induced subgraph of �(R).

This paper is organized as follows. In Sect. 2, we investigate some basic properties
of signed zero-divisor graphs. In Sect. 3, we discuss the relation between ideals and
signed zero-divisor graphs. In Sect. 4 we study the adjacency matrices and spectra of
signed zero-divisor graphs. In Sect. 5, we propose some problems for further research.

2 Basic Properties

In this part, we present some basic properties of signed zero-divisor graphs. Since
the edges of a signed graph � consist of the edges of �+ and �−, one could get
the structure of � by investigating �+ and �−. By simple observations, we get the
following result.

Lemma 2.1 Let R be a finite commutative ringwith signed zero-divisor graph�(R) =
(�(R), σ ). Then the following statements hold.

(i) �(R) is CN if and only if Z(R) = Nil(R).
(ii) Each loop in �(R) is negative.
(iii) If �(R) has only one vertex, then there is a negative loop associated with it.
(iv) For r ∈ R, r ∈ Nil(R)∗ if and only if there is a negative edge incident to it.
(v) �(R) is CP if and only if it contains no loops.

Proof Note that �−(R) is the induced subgraph of �(R) with vertex set Nil(R)∗, this
leads to statement (i).

If there is a loop associated with r , then r2 = 0. Therefore, r ∈ Nil(R) and thus
this loop is negative. It yields (ii).

If V (�(R)) = {r}, then Z(R)∗ = {r}. Therefore, r2 = 0 and thereby there is a
negative loop incident to r . Thus (iii) holds. If r ∈ Nil(R)∗, then there exists a positive
integer n such that rn = 0 and rn−1 
= 0. Therefore, r , rn−1 ∈ Z(R)∗, and there is a
negative edge between r and rn−1. Conversely, if there is a negative edge incident to
r , then r ∈ Nil(R)∗ by the definition. Hence (iv) holds.

If �(R) is CP, then (ii) implies that it contains no loops. Conversely, assume that
�(R) contains no loops. Suppose to the contrary that �(R) is not CP, that is, there is
a negative edge incident to some vertex r . Therefore, rn = 0 and rn−1 
= 0 for some
positive integer n. It leads to that (rn−1)2 = 0, and thus there is a loop incident to
rn−1, a contradiction. Thus (v) holds. ��
Remark 2.2 Lemma 2.1 (v) implies that if�(R) is CP, then�(R) = �̃(R) = �(R) =
�̃(R).

Recall that in a finite commutative ring R, each element of R is either a unit or a
zero-divisor, and every non-unit of R is nilpotent if and only if R is a local ring.

Corollary 2.3 Let R be a finite commutative ring. Then �(R) is CN if and only if R is
local.
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Fig. 1 The graphs in Example 2.4

To make the concepts more clear, we give some simple examples of signed zero-
divisor graphs.

Example 2.4 In Fig.1, we present the signed zero-divisor graphs, reduced signed zero-
divisor graphs togetherwith their underlying graphs over the ringsZ12,Z9 andZ2⊕Z2,
where the negative edges are colored blue and the positive edges are colored black.
Note that, if �̃(R1) 
= �̃(R2), then �(R1) 
= �(R2). However, there exist R1 and R2
such that �̃(R1) = �̃(R2) but �(R1) 
= �(R2). Clearly, the rings R1 = Z9 and R2 =
Z2 ⊕ Z2 are such rings. Therefore, the signed zero-divisor graphs could distinguish
rings better than the classical zero-divisor graphs, that is, there are non-isomorphic
rings share the same reduced zero-divisor graph but distinct signed zero-divisor graphs.

To study the properties of �(R), we consider the special case for R = Zn firstly.

Example 2.5 By simple observations, the following statements are obtained.

• For a prime p and a positive integer m, the signed graph �(Zpm ) is CN since Zpm

is local.
• For distinct primes p1, p2, . . . , ps , the signed graph �(Zp1 p2···ps ) is CP. Since
otherwise, Lemma 2.1(vi) indicates that there is a loop incident to some vertex
r ∈ Z(R)∗. It yields that p1 p2 · · · ps | r2 and hence r = 0, a contradiction.

• For two distinct primes p and q, the signed graph �̃(Zp2q) is CP and �(Zp2q) is

obtained from �̃(Zp2q) by adding a negative loop to the vertex pq. This follows
from the fact that Nil(Zp2q)

∗ = {pq}.
For a graph� and two vertices u, v ∈ V (�), the distance d(u, v) between u and v is

the length of a shortest path between them. The diameter dim(�) is the largest distance
among all pairs of vertices in �, that is, diam(�) = max{d(u, v) | u, v ∈ V (�)}. The
girth gir(�) of � is the length of a smallest cycle in �. It is proved in [2] that �̃(R) is
connected with diam(�̃(R)) ≤ 3 and if �̃(R) contains a cycle, then gir(�̃(R)) ≤ 7. In
case of �(R), we would like to investigate �+(R) and �−(R) to make the structure
of �(R) more clear.
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Theorem 2.6 Let R be a finite commutative ring with identity. Then the following
statements hold.

(i) �−(R) is connected with diameter diam(�−(R)) ≤ 2.
(ii) If u, v ∈ V (�+(R)) ∩ Nil(R), then their distance d(u, v) ≤ 3 in �+(R).
(iii) If u ∈ V (�+(R)) ∩ Nil(R) and v ∈ V (�+(R)) \ Nil(R), then their distance

d(u, v) ≤ 4 in �+(R). Furthermore, if d(u, v) = 4 in �+(R), then there exits
x ∈ Z(R)∗ such that x2 = 0, u ∼ x in �−(R) and x ∼ v in �+(R).

(iv) If u, v ∈ V (�+(R)) \ Nil(R), then d(u, v) ≤ 5 in �+(R). Furthermore, if
d(u, v) > 3, then there exist u∗, v∗ ∈ Z(R)∗ such that (u∗)2 = (v∗)2 = 0,
u∗ ∼ v∗ in �−(R), and u ∼ u∗, v∗ ∼ v in �+(R).

Proof Let x, y ∈ Nil(R)∗ with xm = yn = 0. If xy = 0, then x ∼ y in �−(R).
Suppose that xy 
= 0. Define the set

X = {(k1, k2) | xk1 yk2 
= 0, 1 ≤ k1 ≤ m − 1, 1 ≤ k2 ≤ n − 1}.

Clearly, X 
= ∅ as xy 
= 0. Taking (a, b) ∈ X such that a + b = max{k1 + k2 |
(k1, k2) ∈ X}. Therefore, xa+1yb = xa yb+1 = 0 and thereby x ∼ xa yb ∼ y is a path
of length 2 in �−(R). Hence (i) holds.

Since R is finite commutative with identity, it can be expressed as the direct sum of
local rings, that is, R = R1 ⊕ · · · ⊕ Rn where Ri is local with identity for 1 ≤ i ≤ n.
Assume that εi is the identity of Ri for 1 ≤ i ≤ n. Note that, for each Ri , there
exists wi ∈ R∗

i such that Z(Ri ) = Nil(Ri ) = ann(wi ), where ann(wi ) = {r ∈
Ri | rwi = 0} is the annihilator of wi . If R is local, then V (�+(R)) = ∅ and
there is nothing to prove. Therefore, we may assume that R is not local, i.e., n ≥ 2.
For any x = (x1, . . . , xn) ∈ R, denote by I0(x) = {1 ≤ i ≤ n | xi = 0} and
J (x) = {1 ≤ j ≤ n | x j ∈ Z(R j )}. Clearly, I0(x) ⊆ J (x). For a subset S ⊆ [n],
let δS ∈ R be the element whose i th component is wi if i ∈ S and 0 otherwise,
and let eS ∈ R be the element whose i th component is εi if i ∈ S and 0 otherwise.
If S = {a}, then we may write δa and ea for δS and eS , respectively. To prove the
remaining statements, the following claims are needed.

Claim 2.7 If u ∈ V (�+(R)) ∩ Nil(R), then I0(u) 
= ∅.
Proof If I0(u) = ∅ and v ∼ u in �(R) for some v = (v1, . . . , vn), then uv =
(u1v1, . . . , unvn) = (0, . . . , 0). It means uivi = 0 and thereby vi ∈ ann(wi ) for
1 ≤ i ≤ n. Hence v ∈ Nil(R). It means that σ(uv) = −1 for any v adjacent to u, and
thus u /∈ V (�+(R)), a contradiction. ��
Claim 2.8 Let u, v ∈ Z(R) be two elements with i1 ∈ I0(u) and i2 ∈ I0(v). If
I0(u) ∩ I0(v) = ∅, then u ∼ ei1 ∼ ei2 ∼ v in �+(R); if there exits j ∈ I0(u) ∩ I0(v),
then u ∼ e j ∼ v in �+(R).

Claim 2.9 If u, v ∈ Z(R)∗ with i ∈ I0(u) ∩ J (v), then u ∼ δi ∼ v in �(R).

Claim 2.10 If u ∈ Z(R) \ Nil(R) and u′ ∼ u in �(R), then ∅ 
= J (u) ⊂ [n] and
J (u) ⊆ I0(u′).
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Proof Since u ∈ Z(R), we have J (u) 
= ∅. Since u /∈ Nil(R), J (u) is a proper subset
of [n]. Assume u = (u1, . . . , un) and u′ = (u′

1, . . . , u
′
n). Since u ∼ u′, we have

uiu′
i = 0 for 1 ≤ i ≤ n. It leads to u′

i = 0 for i /∈ J (v) because ui is a unit. Thus
J (u) ⊆ I0(u′). ��

Nowwe show (ii). For u, v ∈ V (�+(R))∩Nil(R), Claim 2.7means I0(u), I0(v) 
=
∅. Therefore, Claim 2.8 implies the distance between them is at most 3 in �+(R).
Hence (ii) holds.

Next, we prove (iii). Assume that u ∈ V (�+(R)) ∩ Nil(R) and v ∈ V (�+(R)) \
Nil(R). Let v′ be a neighbor of v. Claim 2.10 indicates that J (v) ⊆ I0(v′) and thus
I0(v′) 
= ∅. ByClaim2.8, the distance between u and v′ is atmost 3 in�+(R), and thus
d(u, v) ≤ 4 in �+(R). If d(u, v) = 4, then d(u, v′) = 3 and thus I0(u) ∩ I0(v′) = ∅
due to Claim 2.8. Therefore, I0(u) ∩ J (v) = ∅ and thereby I0(u) ∩ J (v) 
= ∅. By
Claim 2.9, we have u ∼ δi ∼ v for some i ∈ I0(u) ∩ J (v). If wi is unit, then
δi /∈ Nil(R) and u ∼ δi ∼ v forms a path of length 3 in �+(R), which contradicts the
assumption d(u, v) = 4 in �+(R). Therefore, wi ∈ ann(wi ) and u ∼ δi in �−(R).
Thus the second part of (iii) holds by taking x = δi . Hence (iii) holds.

At last, we prove (iv). Assume u, v ∈ V (�+(R)) \ Nil(R) and u′ ∼ u and v′ ∼
v in �(R). Claim 2.10 indicates J (u) ⊆ I0(u′) and J (v) ⊆ I0(v′), and thereby
I0(u′), I0(v′) 
= ∅. Claim 2.8 implies d(u′, v′) ≤ 3 and thus d(u, v) ≤ 5 in �+(R). If
d(u, v) > 3, then J (u)∩ J (v) = ∅ since otherwise u ∼ δ j ∼ v is a path in �+(R) of
length 2 for any j ∈ J (u)∩ J (v). Therefore, u ∼ δJ (u) ∼ δJ (v) ∼ v. If δJ (u) /∈ Nil(R)

or δJ (v) /∈ Nil(R) then u ∼ δJ (u) ∼ δJ (v) ∼ v is a path in �+(R) of length 3,
contradicts the assumption d(u, v) > 3 in �+(R). Thus, δJ (u), δJ (v) ∈ Nil(R) and
the second part of (iv) holds by taking u∗ = δJ (u) and v∗ = δJ (v). Hence (iv) holds.

The proof is completed. ��
The following result is immediate from Theorem 2.6.

Corollary 2.11 If R is a finite commutative ring with identity, then the following state-
ments hold.

• �+(R) is connected with diameter at most 5.
• If there exist u ∈ Nil(R)∗ and v ∈ Z(R)\Nil(R) such that d(u, v) = 4 in�+(R),
then the girth gir(�̃(R)) ≤ 6.

• If d(u, v) = 5 in �+(R), then u, v ∈ Z(R) \ Nil(R).
• If diam(�+(R)) ≥ 4, then gir(�̃(R)) ≤ 7.

Example 2.12 In �+(Z36), the neighborhood of 2 is {18} and the neighborhood of
3 is {12, 24}. Since 18, 12, 24 are all nilpotent, there are no edges between them in
�+(R). Therefore, diam(�+(Z36)) > 3 and thus gir(�̃(Z36)) ≤ 7. In fact, 18 ∼ 4 ∼
9 ∼ 12 ∼ 18 is a cycle of length 4 in �̃(Z36).

Since�(R) contains both the edges of�+(R) and the edges of�−(R), Theorem2.6
implies the following result.

Corollary 2.13 ( [2]) If R is a finite commutative ring with identity, then its zero-divisor
graph �(R) is connected with diameter not greater than 3.

Combining Corollary 2.3 and Theorem 2.6, we get the following result.
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Corollary 2.14 If R is a finite commutative local ring, then diam(�(R)) =
diam(�̃(R)) ≤ 2.

Recall that a signed graph is balanced if all its cycles are balanced. Since �(R)

has a negative loop whenever it is not CP, the graph �(R) is balanced if and only if
it is CP. A natural question is whether the �̃(R) is balanced when �(R) is not CP.
For example, �̃(Z9) and �̃(Z12) are balanced and �̃(Z27) is not balanced because
3 ∼ 9 ∼ 18 ∼ 3 forms a negative cycle. Note that Example 2.5 gives that �̃(Zp2q) is
CP and thus is balanced. In case of Zn , we have the following result.

Theorem 2.15 Let n be a positive integer with prime factorization n = 2l pm1
1 pm2

2 · · ·
pms
s , where p1, . . . , ps are distinct odd primes and m1 ≥ m2 ≥ · · ·ms ≥ 0. Then

�̃(Zn) is balanced if and only if either l = 2 and m1 ≤ 1, or l ≤ 1, m1 ≤ 2 and
m2 ≤ 1.

Proof If l = 2 and m1 ≤ 1, then Nil(Zn)
∗ = {2pm1

1 · · · pms
s }. It leads to that �̃(Zn)

is CP and hence balanced. If l ≤ 1 and m1 ≤ 1, then Nil(Zn)
∗ = ∅ and thus �(R)

is CP. It means �̃(R) is CP, and thereby is balanced. If l ≤ 1 and m1 = 2, then
Nil(Zn)

∗ = {2l p1 pm2
2 · · · pms

s }. It leads to that �̃(Zn) is CP and hence balanced. The
sufficiency holds, and we prove the necessity in what follows.

Assume that �̃(Zn) is balanced. Firstly, we show that l ≤ 3 and m1 ≤ 2. If l ≥ 4,
then

2l−2 pm1
1 · · · pms

s ∼ 2l−1 pm1
1 · · · pms

s ∼ 3 · 2l−2 pm1
1 · · · pms

s ∼ 2l−2 pm1
1 · · · pms

s

forms a negative cycle, a contradiction. If m1 ≥ 3, then

2l pm1−2
1 pm2

2 · · · pms
s ∼ 2l pm1−1

1 pm2
2 · · · pms

s ∼ 2l+1 pm1−2
1 pm2

2 · · · pms
s ∼ 2l pm1−2

1 pm2
2 · · · pms

s

forms a negative cycle, a contradiction.
Secondly, we show that m2 ≤ 1. If m2 ≥ 2, then

2l pm1−1
1 pm2−1

2 · · · pms
s ∼ 2l pm1−1

1 pm2
2 · · · pms

s ∼ 2l pm1
1 pm2−1

2 · · · pms
s ∼ 2l pm1−1

1 pm2−1
2 · · · pms

s

forms a negative cycle, a contradiction.
Thirdly, we show that m1 ≤ 1 whenever l ≥ 2. If l ≥ 2 and m1 ≥ 2, then

2l−1 pm1−1
1 pm2

2 · · · pms
s ∼ 2l−1 pm1

1 pm2
2 · · · pms

s ∼ 2l pm1−1
1 pm2

2 · · · pms
s ∼ 2l−1 pm1−1

1 pm2
2 · · · pms

s

forms a negative cycle, a contradiction.
Thus, it remains to show that the case l = 3 cannot happen. In fact, if l = 3, then

it is proved m1 ≤ 1, and thereby Nil(Zn)
∗ = {r1, r2}, where r1 = 2pm1

1 · · · pms
s and

r2 = 22 pm1
1 · · · pms

s . Moreover, e = {r1, r2} is an edge in �−(Zn). Note that 22 ∼ r1
and 2 ∼ r2 in �+(Zn). Therefore, Theorem 2.6 (ii) implies that there is a path P of
length at most 3 from r1 to r2. Thus, the path P and the edge e form a negative cycle,
a contradiction.

The proof is completed. ��
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From the proof of Theorem 2.15, we get the following result.

Corollary 2.16 The signed graph �̃(Zn) is balanced if and only if it is CP.

3 Ideals and Signed Zero-Divisor Graphs

In this part, we discuss the relation between the ideal I of the ring R and the structure
of �(R). For an ideal I of the ring R, the nil radical of I , denoted by

√
I , is the set

√
I = {r ∈ R | rk ∈ I for some positive integer k (k varies with r )}.

The ideal I is prime if ab ∈ I indicates that a ∈ I or b ∈ I , I is semiprime if I = √
I ,

and is primary if the conditions ab ∈ I and a /∈ I together imply b ∈ √
I . We start

with the following classical result.

Lemma 3.1 ([6]) An ideal I of R is prime if and only if Z(R/I ) = {0}, is primary if
and only if Z(R/I ) = Nil(R/I ), and is semiprime if and only if Nil(R/I ) = {0}.

According to the definitions, Lemma 3.1 could be rewritten as follows.

Corollary 3.2 An ideal I of R is prime if and only if�(R/I ) is a null graph, is primary
if and only if �(R/I ) is CN, and is semiprime if and only if �(R/I ) is CP.

Example 3.3 The signed zero-divisor graphs�(Z12),�(Z12/〈4〉) and�(Z12/〈6〉) are
presented in Fig.2, where the negative edges are colored blue and the positive edges
are colored black. From these graphs, we see 〈4〉 is primary since �(Z12/〈4〉) is CN
and 〈6〉 is semiprime since �(Z12/〈6〉) is CP.

Although, from Corollary 3.2, one could determine whether the ideal I is prime,
semiprime or primary by investigating the signed zero-divisor graph �(R/I ), it is
more interesting to find an approach to investigate I just by studying �(R) instead of
�(R/I ).

Lemma 3.4 If R is a finite commutative ring and r ∈ R \ Z(R), then there exists a
positive integer k such that rk = e.

Fig. 2 The signed zero-divisor graphs
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Proof For each positive integer k, we have rk ∈ R. Since r ∈ R \ Z(R), we have
rk 
= 0 for any k. Moreover, since R is finite, there exist k1 and k2 satisfying k1 < k2
such that rk1 = rk2 . It yields that rk2−k1 = e because r is not a zero-divisor. ��
Lemma 3.5 Let R be a finite commutative ring and I a non-trivial ideal of R. If
r ∈ Z(R/I )∗ then r ⊆ Z(R)∗.

Proof We only needs to show that r ∈ Z(R)∗ because each element in r could be the
representative element. Since r ∈ Z(R/I )∗, there exists r ′ 
= 0 such that rr ′ = 0.
Suppose to the contrary that r /∈ Z(R). Lemma 3.4 indicates that there exists a positive
integer k such that rk = e. Therefore, r ′ = rkr ′ = rk−1(rr ′) ∈ I and thus r ′ = 0, a
contradiction. ��

From Lemma 3.5, we get the following result.

Lemma 3.6 Let R be a finite commutative ring and I an ideal of R. If r ∈ V (�(R/I )),
then r ⊆ V (�(R)). Furthermore, for two elements r , r ′ ∈ Z(R/I )∗, if there is a
negative edge between the two vertex sets r and r ′ in �(R), then there is a negative
edge between the two vertices r and r ′ in �(R/I ).

Proof The first part is immediate from Lemma 3.5, and we only prove the second
part. If there is a negative edge between the two subsets r and r ′ in �(R), then there
exist r1 ∈ r and r2 ∈ r ′ satisfying rk11 = rk22 = r1r2 = 0 for some integers k1

and k2. Therefore, in R/I , we have rk1 = r1k1 = 0, r ′k2 = r2k2 = rk22 = 0 and
r · r ′ = r1 · r2 = r1r2 = 0. It indicates that there is a negative edge between r and r ′
in �(R/I ). ��
Lemma 3.6 is useful in some case although it is very simple.

Corollary 3.7 Let R be a finite commutative ring and I an ideal of R. If there is a
negative edge between r + I and r ′ + I in �(R) for some r + I , r ′ + I ∈ Z(R/I )∗,
then I is not semiprime.

Motivated by Lemma 3.6, we would like to construct a novel graph from�(R) and
I .

Definition 3.8 Let R be a finite commutative ring and I an ideal of R. We construct
the new signed graph �I (R) with vertex set

V (�I (R)) = {r + I | r ∈ Z(R)∗, r + I ⊆ Z(R)∗},

and the adjacency relations of the vertices are as follows:

• if there is no edge between two distinct vertex sets r + I and r ′ + I in �(R), then
r + I and r ′ + I are not adjacent in �I (R);

• if all edges between two distinct vertex sets r + I and r ′ + I are positive in �(R),
then there is a positive edge between r + I and r ′ + I in �I (R);

• if there is a negative edge between two distinct vertex sets r + I and r ′ + I in
�(R), then there is a negative edge between r + I and r ′ + I in �I (R);
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• if there is an edge in the vertex set r + I in �(R), then there is a negative loop
incident to r + I in �I (R).

It is happened to find that �(Z12/〈4〉) = �〈4〉(Z12) and �(Z12/〈6〉) = �〈6〉(Z12).
We may call an ideal I of R graph-coincident if �(R/I ) = �I (R), and call the ring
R is graph-coincident if all its ideals are graph-coincident. Clearly, the trivial ideals
{0} and R are graph-coincident. With respect to this notion, Corollary 3.2 could be
rewritten as follows.

Corollary 3.9 Let I be a graph-coincident ideal of the commutative ring R. Then I is
prime if and only if �I (R) is a null graph, is primary if and only if �I (R) is CN, and
is semiprime if and only if �I (R) is CP.

Note that �I (R) could be obtained just by investigating �(R) and the cosets of I
but not the algebraic operations in R/I . Corollary 3.9 provides a simpler approach to
determine whether I is prime, primary or semiprime provided I is graph-coincident.

4 AdjacencyMatrices and Spectra

In this part, we study the adjacency matrices and spectra of signed zero-divisor graphs.
In what follows, we denote by 0m,n , Jm,n and 1n the all-zero matrix of size m × n,
the all-one matrix of size m × n and the all-one column vector of size n, respectively.
If the sizes of such matrices is evident from the context, we may delete the subscripts
for convenience. Note that �(Zp) is a null graph for a prime p. We first investigate
�(Zpm ) for m ≥ 2.

Lemma 4.1 For a prime p and a positive integer m ≥ 2, the adjacency matrix of
�(Zpm ) is

A(�(Zpm )) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 −Jn1,nm−1

0 0 · · · −Jn2,nm−2 −Jn2,nm−1
...

...
...

...

0 −Jnm−2,n2 · · · −Jnm−2,nm−2 −Jnm−2,nm−1

−Jnm−1,n1 −Jnm−1,n2 · · · −Jnm−1,nm−2 −Jnm−1,nm−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where ni = pm−i − pm−i−1 for 1 ≤ i ≤ m − 1.

Proof Let Vi = {1 ≤ x ≤ pm | gcd(x, pm) = pi } for 1 ≤ i ≤ m − 1. It is clear that
Vi ∩ Vj = ∅ for i 
= j and Z(Zpm )∗ = Nil(Zpm )∗ = V1 ∪ · · · ∪ Vm−1. Moreover,
|Vi | = ϕ(pm−i ), where ϕ(·) is the Euler’s totient function. For convenience, denote
by ni = ϕ(pm−i ) for 1 ≤ i ≤ m − 1.

Now, we may check that, for two vertex sets Vi and Vj (which may be equal), if
i + j ≥ m, then every vertex in Vi is adjacent to all vertices of Vj by negative edges;
if i + j ≤ m−1, then there are no edges between Vi and Vj . Therefore, the adjacency
matrix of �(Zpm ) is
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A(�(Zpm )) = −

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 Jn1,nm−1

0 0 · · · Jn2,nm−2 Jn2,nm−1
...

...
...

...

0 Jnm−2,n2 · · · Jnm−2,nm−2 Jnm−2,nm−1

Jnm−1,n1 Jnm−1,n2 · · · Jnm−1,nm−2 Jnm−1,nm−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

��
By using the knowledge of equitable partition [9, Pages 197–198], we get the

following result.

Corollary 4.2 For a prime p and a positive integer m ≥ 2, the nullity of �(Zpm ) is
pm−1 − m, and the characteristic polynomial of �(Zpm ) is

φ�(Zpm )(λ) = λpm−1−mφT (λ),

where φT (λ) is the characteristic polynomial of the matrix

T = −

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 p − 1
0 0 · · · p2 − p p − 1
...

...
...

...

0 pm−2 − pm−3 · · · p2 − p p − 1
pm−1 − pm−2 pm−2 − pm−1 · · · p2 − p p − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Example 4.3 For a prime p, according to Lemma 4.1 and Corollary 4.2, the adjacency
matrix and characteristic polynomial of �(Zp2) are

A(�(Zp2)) = −Jp−1,p−1 and φ�(Zp2 )(λ) = λp−2(λ + p − 1).

Therefore, the spectrum of �(Zp2) is

Sp(�(Zp2)) = {[0]p−2,−(p − 1)}.

The adjacency matrix and characteristic polynomial of �(Zp3) are

A(�(Zp3)) =
(

0 −Jp2−p,p−1
−Jp−1,p2−1 −Jp−1,p−1

)

and

φ�(Zp3 )(λ) = λp2−3(λ2 + (p − 1)λ − p(p − 1)2).

Therefore, the spectrum of �(Zp3) is

Sp(�(Zp3)) =
{

[0]p2−3,± (p − 1)(
√
4p + 1 − 1)

2

}

.
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For m ≥ 4, we could not find a acceptable formula to express φT (λ) even though the
matrix T is very clear and neat.

For two signed graph �1 and �2, their product �1 × �2 is the signed graph with
vertex set V = V (�1) × V (�2), and (u, v) ∼ (u′, v′) if u ∼ u′ in �1 and v ∼ v′ in
�2. Furthermore, the edge {(u, v), (u′, v′)} is negative if and only if both the edges
{u, u′} and {v, v′} are negative.
Theorem 4.4 Let R1 and R2 be two finite commutative local rings. If A1 and A2 are,
respectively, the adjacency matrix of �(R1) and �(R2), then the adjacency matrix of
�(R1 ⊕ R2) is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A2 0 −J 1T ⊗ A2 0 J −1T ⊗ A2
0 0 J 0 0 J 0

−J J A1 A1 ⊗ 1T −1T ⊗ A1 0 0
1 ⊗ A2 0 A1 ⊗ 1 A1 ⊗ A2 0 0 0

0 0 −1 ⊗ A1 0 0 0 0
J J 0 0 0 0 0

−1 ⊗ A2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where X ⊗ Y represents the Kronecker product of the matrices X and Y .

Proof For convenience, we denote by

⎧
⎪⎪⎨

⎪⎪⎩

V1 = {0} ⊕ Z(R2)
∗, V2 = {0} ⊕ Z(R2),

V3 = Z(R1)
∗ ⊕ {0}, V4 = Z(R1)

∗ ⊕ Z(R2)
∗, V5 = Z(R1)

∗ ⊕ Z(R2),

V6 = Z(R1) ⊕ {0}, V7 = Z(R1) ⊕ Z(R2)
∗.

It is easy to verify that V (�(R1 ⊕ R2)) = V1 ∪ V2 ∪ · · · ∪ V7 is a partition of the
vertex set.

Firstly, we discuss the edges between these subsets.

• There are no edges between V1 and V2 ∪ V5.
• There is a negative edge between any vertex in V1 and any vertex in V3.
• For any vertex (0, r2) in V1 and any vertex (r1, r ′

2) in V4, if r2 ∼ r ′
2 in �(R2),

then there is a negative edge between (0, r2) and (r1, r ′
2); otherwise, they are not

adjacent.
• There is a positive edge between any vertex in V1 and any vertex in V6.
• For any vertex (0, r2) in V1 and any vertex (r1, r ′

2) in V7, if r2 ∼ r ′
2 in �(R2),

then there is a positive edge between (0, r2) and (r1, r ′
2); otherwise, they are not

adjacent.
• There are no edges between V2 and V4 ∪ V5 ∪ V7.
• There is a positive edge between any vertex in V2 and any vertex in V3 ∪ V6.
• There are no edges between V3 and V6 ∪ V7.
• For any vertex (r1, 0) in V3 and any vertex (r ′

1, r2) in V4, if r1 ∼ r ′
1 in �(R1),

then there is a negative edge between (r1, 0) and (r ′
1, r2); otherwise, they are not

adjacent.
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Fig. 3 The diagram of
�(R1 ⊕ R2)

• For any vertex (r1, 0) in V3 and any vertex (r ′
1, r2) in V5, if r1 ∼ r ′

1 in �(R1),
then there is a positive edge between (r1, 0) and (r ′

1, r2); otherwise, they are not
adjacent.

• There are no edges between Vi and Vj where {i, j} ⊂ {4, 5, 6, 7}.
To make the structure more clear, we present it in Fig.3. In this figure, each vertex
represents a subset, the black (blue) fat line between two parts means that every vertex
in one part is adjacent to every vertex in the other part by a positive (resp. negative)
edge, and the black (blue) dashed line between two parts means that there is positive
(resp. negative) edge between one vertex (r1, r2) in one part and another vertex (r ′

1, r
′
2)

in the other part if and only if either r1 ∼ r ′
1 in �(R1) or r2 ∼ r ′

2 in �(R2).
Next, we discuss the edges in every subsets.

• The subset V1 induces a copy of �(R2), V3 induces a copy of �(R1), and V4
induces a copy of �(R1) × �(R2).

• The subsets V2, V5, V6, V7 are all independent sets.

At last, the adjacency matrix of �(R1 ⊕ R2) is obtained, which is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A2 0 −J 1T ⊗ A2 0 J −1T ⊗ A2
0 0 J 0 0 J 0

−J J A1 A1 ⊗ 1T −1T ⊗ A1 0 0
1 ⊗ A2 0 A1 ⊗ 1 A1 ⊗ A2 0 0 0

0 0 −1 ⊗ A1 0 0 0 0
J J 0 0 0 0 0

−1 ⊗ A2 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

here we omit all the subscripts of the blocks in A as their sizes are clear. ��
Remark 4.5 Theorem 4.4 gives the specific structure of �(R1 ⊕ R2) when both R1
and R2 are local. However, when one of them is not local, the case will be very fussy.

Example 4.6 Let p and q be two primes which may be equal. Note that �(Zp) is a
null graph. According to Example 4.3 and Theorem 4.4, the adjacency matrix and
characteristic polynomial of �(Zp ⊕ Zq2) are
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A =

⎛

⎜
⎜
⎝

−Jq−1,q−1 0q−1,q2−q Jq−1,p−1 1Tp−1 ⊗ Jq−1,q−1

0q2−q,q−1 0q2−q,q2−q Jq2−q,p−1 0q2−q,(p−1)(q−1)
Jp−1,q−1 Jp−1,q2−q 0p−1,p−1 0p−1,(p−1)(q−1)

1p−1 ⊗ Jq−1,q−1 0(p−1)(q−1),q2−q 0(p−1)(q−1),p−1 0(p−1)(q−1),(p−1)(q−1)

⎞

⎟
⎟
⎠

and φ�(Zp⊕Zq2 )(λ) = λq
2+(p−1)q−5 f (λ), where

f (λ) = λ4 + (q − 1)λ3 − 2q(p − 1)(q − 1)λ2 − q(p − 1)(q − 1)2λ + q(p − 1)2(q − 1)3.

Therefore, the spectrum of �(Zp ⊕ Zq2) is

Sp(�(Zp ⊕ Zq2)) =
{
[0]q2+(p−1)q−5, λ1, λ2, λ3, λ4

}
,

where λ1, λ2, λ3, λ4 are roots of f (λ).
Similarly, one could obtain the adjacency matrices and characteristic polynomials

of �(Zpi ⊕ Zq j ) for 1 ≤ i, j ≤ 3.

5 Conclusion

In this paper, we associate a signed graph with a commutative ring, that is, the signed
zero-divisor graph. By investigating this signed graph, we try to explore the structure
of the ring from different points of view. Since a signed zero-divisor graph contains
both positive edges and negative edges, we define the positive subgraph and negative
subgraph. We first investigate the distances in the positive and negative subgraphs,
from which we get some results on the corresponding signed zero-divisor graphs and
the classical zero-divisor graphs (which is called reduced zero-divisor graphs in this
paper). We also consider whether a reduced signed zero-divisor graph is balanced or
not. In fact, we completely solve this problem on the ring Zn for any n. However, for
general rings, this problem is far from being solved. So we propose

Problem 5.1 For a commutative ring R, give a sufficient and necessary condition, in
terms of the property of R, for �̃(R) to be balanced.

Next, we try to study the ideals of a ring R by investigating the signed zero-divisor
graph �(R). There are relations between the properties of an ideal I of the ring R
and the signed zero-divisor graph �(R/I ). However, we would like to investigate
I but avoid studying the operations in R/I . Therefore, we construct a new signed
graph �I (R), and find some connections between �(R/I ) and �I (R). Interestingly,
for some ideal I , these two signed graphs could be the same. Hence, we define the
graph-coincident ideal to be the ideals satisfying �I (R) = �(R/I ). We know little
about such ideals and leave the following problems for further research.

Problem 5.2 Let R be a finite commutative ring and I an ideal of R. Give a sufficient
and necessary condition for I to be graph-coincident.
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Problem 5.3 Let R be a finite commutative ring. Give a sufficient and necessary con-
dition for R to be graph-coincident.

At last, we study the adjacency matrices and spectra of signed zero-divisor graphs.
In fact, we completely determine the adjacency matrix of �(R1 ⊕ R2), in terms of
the adjacency matrices of �(R1) and �(R2), when R1 and R2 are local. This means
that the structure of �(R1 ⊕ R2) is clear whenever the graphs �(R1) and �(R2) are
given. Note that any finite commutative ring could be expressed as the direct sum of
local rings, that is, R = R1 ⊕ R2 ⊕ · · · ⊕ Rn . Therefore, we could determine the
adjacency matrix of �(R) by induction on n if we could determine the adjacency
matrix of �(R1 ⊕ R2) whenever R1 is local but R2 is not. However, when R2 is not
local, we could not partition V (�(R1 ⊕ R2)) into seven subsets as we did in the proof
of Theorem 4.4, because we should distinguish the nilpotent elements and other zero-
divisors of R2. It will be much more complicated. A concise method to determine
the adjacency matrix of �(R) is needed. It would be a good start to determine the
adjacency matrix and the spectrum of �(Zn).

Problem 5.4 Determine the adjacency matrix and the spectrum of �(Zn).
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