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In this paper, we determine the underlying graphs of the 
mixed graphs with smallest Hermitian eigenvalue greater 
than −

√
3. Furthermore, we characterize all mixed graphs 

on n ≥ 11 vertices with smallest Hermitian eigenvalue 
greater than −

√
3. The mixed graphs on n ≤ 10 vertices 

with smallest Hermitian eigenvalue greater than −
√

3 could 
be also obtained easily with the help of computer because 
their underlying graphs are determined. Roughly speaking, 
we completely determine the mixed graphs with smallest 
Hermitian eigenvalue greater than −

√
3.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

It is a classical problem in Spectral Graph Theory to characterize the graphs whose 
eigenvalues are bounded. The research of such problems may date back to the work 
of Smith in 1970 [14]. This work stimulated the interest of researchers. There are a 
lot of results in the literature concerning the topic. In 1972, Hoffman [8] obtained all 
limit points of the spectral radii of non-negative symmetric matrices smaller than 

√
5+1
2 . 
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In 1982, Cvetković et al. [2] characterized the graphs whose spectral radius does not 
exceed 

√
2 +

√
5 and in 1989, Brouwer and Neumaier [1] determined the graphs with 

spectral radius between 2 and 
√

2 +
√

5 and later, Woo and Neumaier [18] described the 
structure of graphs whose spectral radius are bounded above by 3

√
2/2. With respect to 

the smallest eigenvalues, Hoffman [9] investigated the graphs whose smallest eigenvalue 
exceeds −1 −

√
2, and this work was continued by Taniguchi et al. [15,16,10]. Especially, 

the graphs with smallest eigenvalue −2 attracted a lot of attention, and we refer the 
reader to the survey [3] and the book [4]. In this paper we consider the smallest Hermitian 
eigenvalues of mixed graphs.

A mixed graph is defined to be an ordered triple (V, E, A), where V is the vertex set, 
E is the undirected edge set and A is the directed edge set. Note that, if both uv and vu
are directed edges, then we regard {u, v} ∈ E as an undirected edge. Thus, if (u, v) ∈ A

then (v, u) /∈ A. Clearly, if A = ∅ then the mixed graph turns to be a graph and if E = ∅
then the mixed graph turns to be an oriented graph. For convenience, we write u ↔ v if 
{u, v} ∈ E and u → v if (u, v) ∈ A. If v1 ↔ v2 for any v1 ∈ V1, then we write V1 ↔ v2. 
We could define the notations v2 → V1 and V1 → v2 similarly. If v1 ↔ v2 for any v1 ∈ V1

and v2 ∈ V2, then we write V1 ↔ V2. We could also define the notation V1 → V2 similarly. 
Moreover, we say v and v′ are twins with respect to the vertex u, denoted by v ∼u v′, 
if, v ↔ u if and only if v′ ↔ u, v → u if and only if v′ → u, and u → v if and only if 
u → v′. If the vertex set W ⊆ V satisfies w ∼u w′ for any two vertices w, w′ ∈ W , then 
W is a twin set with respect to u, denoted by W

∼u
. If W

∼u
for any u ∈ U then we write 

W
∼U

. If W
∼U

and U
∼W

then we write W � U .
Let M = (V, E, A) be a mixed graph with V = {v1, v2, . . . , vn}. The underlying graph

Γ(M) is a graph with vertex set V and two vertices u ∼ v if either u ↔ v, u → v

or v → u. For U ⊆ V and W ⊆ V \ U , denote by NW (U) = {w | w ∈ W, u ∼
w in Γ(M) for some u ∈ U}. Especially, if U = {u} then NW (u) is the set of neighbors 
of u in W . Moreover, denote by N+

W (u) = {w | u → w}, N−
W (u) = {w | u ← w} and 

No
W (u) = {w | u ↔ w}. It is clear that NW (u) = N+

W (u) ∪ N−
W (u) ∪ No

W (u). As usual, 
we always write Pn, Cn, Kn1,n2,...,nk

the path, the cycle and the complete multipartite 
graph of the corresponding order. For two graphs G and H, the union G ∪H is the graph 
with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join G∇H is the graph 
obtained from G ∪H by adding all edges between G and H. The distance of two vertices 
u, v ∈ V (G) in G is the length of a shortest path from u to v in G, denoted by dG(u, v). 
The diameter of G is the largest distance in G, denoted by d(G). All other notations not 
mentioned here are standard in [5].

We always write MG for M when the underlying graph Γ(M) = G. Moreover, for a 
graph G, denote by MG the set of mixed graphs with underlying graph G. Especially, if 
MG = G then we write G for MG. The mixed graph MG is connected if G is connected 
and we always consider the connected mixed graphs in this paper. The diameter of MG

is defined to be the diameter of G, denoted by d(MG). For a subset U ⊆ V , the mixed 
subgraph induced by U is the mixed graph MG[U ] = (U, E′, A′) with E′ = {{u, v} |
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u, v ∈ U, {u, v} ∈ E} and A′ = {(u, v) | u, v ∈ U, (u, v) ∈ A}. The Hermitian matrix of 
MG is defined to be a square matrix H(MG) = [hst]n×n with

hst =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, vs ↔ vt,

i, vs → vt,

−i, vt → vs,

0, otherwise,

which was proposed by Liu and Li [11] and Guo and Mohar [6] independently. Since 
H(MG) is a Hermitian matrix, all eigenvalues of H(MG) are real and listed as λ1 ≥ λ2 ≥
· · · ≥ λn. The collection of such eigenvalues is the spectrum of H(MG). The Hermitian 
spectrum of the mixed graph MG is just the spectrum of H(MG), denoted by Sp(MG). 
For convenience, we always write λ(MG) for the smallest eigenvalue of MG. Two mixed 
graphs MG, M ′

G ∈ MG are switching equivalent if there exists a diagonal matrix D whose 
entries belong to {±1, ±i} such that H(M ′

G) = DH(MG)D∗. It is clear that the relation 
switching equivalence is an equivalence relation. Thus, denote by [MG] the equivalence 
class containing MG with respect to switching equivalence. Obviously, all graphs in [MG]
share the same spectrum. In 2017, Guo and Mohar [7] determined all mixed graphs with 
Hermitian spectral radius below 2. Recently, Yuan et al. [19] characterized all mixed 
graphs with Hermitian spectral radius at most 2 when G contains no cycles of length 4
and Lu [12] determined the connected mixed graphs with smallest Hermitian eigenvalue 
greater than −

√
5+1
2 .

In this paper, we try to characterize the connected mixed graphs with smallest Her-
mitian eigenvalue greater than −

√
3. Denote by Mn(−

√
3) the set of connected mixed 

graphs on n vertices with λ > −
√

3. We first get the underlying graphs of the graphs in 
Mn(−

√
3). Next, we determine Mn(−

√
3) for n ≥ 11. For n ≤ 10, since the underlying 

graphs of the mixed graphs Mn(−
√

3) are obtained, the mixed graphs Mn(−
√

3) could 
be obtained with the help of computer immediately.

2. Preliminaries

In this part, we will introduce some results which will be used latter. We first present 
the famous interlacing theorem with respect to Hermitian matrix.

Lemma 1 ([11]). Let MG be a mixed graph with underlying graph G. If MH is a mixed 
induced subgraph of MG, then the eigenvalues of MH interlace those of MG.

Next we introduce another powerful tool in spectral graph theorem, that is the equi-
table partition. Let MG be a mixed graph on n vertices with underlying graph G. Let π: 
V (G) = V1∪V2∪· · ·∪Vs be a partition of V (G) with |Vk| = nk and n = n1+n2+· · ·+ns. 
For 1 ≤ k, l ≤ s, denote by Hkl the submatrix of H(MG) whose rows corresponding to Vk

and columns corresponding to Vl. Therefore, the Hermitian matrix H(MG) can be writ-
ten as H(MG) = [Hkl]. Denote by bkl = 1THkl1/nk the average row-sums of Hkl, where 
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1 denotes the all-one vector. The matrix Hπ = [bkl]s×s is called the quotient matrix of 
H(MG). If, for any k, l, the row-sum of Hkl corresponding to any vertex v ∈ Vk equals to 
bkl, then π is called an equitable partition of MG. Let δVk

be a vector indexed by V (G)
such that δVk

(v) = 1 if v ∈ Vk and 0 otherwise. The matrix P = [δV1δV2 · · · δVs
] is called 

the characteristic matrix of π. If π is an equitable partition, then H(MG)P = PHπ. It 
leads to the following famous result.

Lemma 2 ([5, Theorem 9.3.3, page 197]). Let MG be a mixed graph and π an equitable 
partition of MG with quotient matrix Hπ and characteristic matrix P . Then the eigen-
values of Hπ are also eigenvalues of H(MG). Furthermore, H(MG) has the following 
two kinds of eigenvectors:

(i) the eigenvectors in the column space of P , and the corresponding eigenvalues coincide 
with the eigenvalues of Hπ;

(ii) the eigenvectors orthogonal to the columns of P , i.e., those eigenvectors sum to zero 
on each cell of π.

Let H be a set of graphs. A graph G is called H-free if none of graphs in H can be an 
induced subgraph of G. Especially, if H = {H} then the H-free graph G is also called 
an H-free graph. Recall that a P4-free graph is called a cograph. The following result 
reveals the structure of cographs.

Lemma 3 ([13]). If G is a connected P4-free graph, then G is the join of two graphs, that 
is, G = G1∇G2 for some graphs G1 and G2 with |V (G1)|, |V (G2)| ≥ 1.

We determine some types of H-free graphs when H contains some simple graphs.

Lemma 4. If G is a {2K1, K3}-free graph then G ∈ {K1, K2}. If G is {2K1, K4}-free 
graph then G ∈ {K1, K2, K3}.

Proof. It is clear that, if a graph G is 2K1-free, then it is a complete graph. Thus, we 
have G ∈ {K1, K2} if G is additional K3-free and G ∈ {K1, K2, K3} if G is additional 
K4-free. �
Lemma 5. If G is a {2K2, K3, 3K1, K1,2}-free graph then G ∈ {K1, K2, 2K1, K1 ∪K2}.

Proof. It is clear that, if a graph G is {3K1, K1,2}-free, then it is a union of at most 
two complete graphs. Thus, we have G ∈ {K1, K2, 2K1, K1 ∪ K2} if G is additional 
{2K2, K3}-free. �
Lemma 6. If G is a {3K1, K1 ∪K1,2, 2K2, K1 ∪K3, P4, K1∇(K1 ∪K2), K2,2, K2∇K1,2}-
free graph then G ∈ {2K1, K1 ∪K2, K1,2, K1∇K1,2, Kn}.
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Proof. It is clear that, if a graph G is 3K1-free, then it has at most two connected 
components. Suppose that G has two connected components X and Y . Since G is 
K1 ∪ K1,2-free, one of X and Y is a complete graph. Combining with that G is 
{2K2, K1 ∪K3}-free, we have G ∈ {2K1, K1 ∪K2}. Now we suppose G is connected. If 
|V (G)| ≤ 3, then G ∈ {K1, K2, K3, K1,2}. Note that all connected graphs on 4 vertices 
are P4, K1,3, K2,2, K1∇(K1 ∪K2), K1∇K1,2 and K4. If |V (G)| = 4, then G = K1∇K1,2

or K4 since G is {3K1, P4, K2,2, K1∇(K1 ∪K2)}-free.
Next, we show that |V (G)| ≤ 4 when G �= Kn. Suppose to the contrary that 

G �= Kn and |V (G)| ≥ 5. Therefore, G has a connected induced subgraph H on 
4 vertices satisfying H �= K4. Since H is also {3K1, P4, K2,2, K1∇(K1 ∪ K2)}-free, 
we have H = K1∇K1,2 = K2∇2K1. Assume that V (H) = {u1, v1, u2, v2} such that 
H[v1, v2] = 2K1 and H[u1, u2] = K2. Let x ∈ V (G) \ V (H) be a vertex adjacent 
to some vertices of H. If |NH(x)| = 4 then G[V (H) ∪ {x}] = K2∇K1,2, a contra-
diction. If |NH(x)| = 3 then G[x, v1, v2, u1] = K2,2 when NH(x) = {v1, v2, u2}, and 
G[x, v1, v2, u2] = K1∇(K1 ∪K2) when NH(x) = {u1, u2, v2}, which are both impossible. 
If |NH(x)| = 2 then G[x, v1, v2] = 3K1 when NH(x) = {u1, u2}, G[x, v1, v2, u1] = K2,2

when NH(x) = {v1, v2}, and G[x, u1, v1, v2] = K1∇(K1 ∪K2) when NH(x) = {u1, v1}, 
which are all impossible. If |NH(x)| = 1 then G[x, v1, v2] = 3K1 when NH(x) = {u1}, 
and G[x, v1, u2, v2] = P4 when NH(x) = {v1}, which are both impossible.

The proof is completed. �
Lemma 7. If G is a {3K1, K1,2, K5}-free graph then G ∈ {K1, K2, K3, K4, 2K1, K1 ∪
K2, K1 ∪K3, K1 ∪K4, 2K2, K2 ∪K3, K2 ∪K4, 2K3, K3 ∪K4, 2K4}.

Proof. It is clear that, if a graph G is {K1,2, 3K1}-free, then it is the union of at most 
two complete graphs. Thus, we have G ∈ {K1, K2, K3, K4, 2K1, K1 ∪K2, K1 ∪K3, K1 ∪
K4, 2K2, K2 ∪K3, K2 ∪K4, 2K3, K3 ∪K4, 2K4} if G is additional K5-free. �

Guo and Mohar introduced the so called four-way switching to generate switching 
equivalent graphs [6]. A four-way switching is the operation of changing a mixed graph 
MG into the mixed graph M ′

G by choosing an appropriate diagonal matrix S with Sjj ∈
{±1, ±i} and setting H(M ′

G) = S−1H(MG)S. Let G be a graph and X an edge cut such 
that G −X = G1∪G2. Define X+ = {(v1, v2) | {v1, v2} ∈ X, v1 ∈ V1, v2 ∈ V2} and X− =
{(v2, v1) | {v1, v2} ∈ X, v1 ∈ V1, v2 ∈ V2}. The cut X is called a coincident cut of the 
mixed graph MG = (V, E, A) if either X+ ⊆ A, X− ⊆ A or X ⊆ E. If X is a coincident 
cut of MG, then the X-switching of MG is the mixed graph MG(X) = (V, E′, A′) with 
E′ = E∪X and A′ = A \(X+∪X−). Note that MG(X) = MG if X ⊆ E. From four-way 
switching, the following results are obtained.

Lemma 8 ([6]). Let MG be a mixed graph. If X is a coincident cut of MG, then MG and 
MG(X) are switching equivalent and thus Sp(MG) = Sp(MG(X)).
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If G is a forest, then each edge is a cut. Moreover, each edge is a coincident cut of any 
mixed graph MG. Thus, Lemma 8 implies the following result.

Corollary 1 ([6]). If G is a forest, then Sp(MG) = Sp(G) for any mixed graph MG ∈ MG.

Let M be a connected mixed graph and H(M) = [hst] be its Hermitian matrix. The 
value of a mixed walk W = v1v2v3 · · · vl is h(W ) = h12h23 · · ·h(l−1)l. A mixed walk is 
positive or negative if h(W ) = 1 or h(W ) = −1, respectively. Note that for one direction 
the value of a mixed walk or a mixed cycle is α, then for the reversed direction its value 
is α. Thus, if the value of a cycle is 1 (resp. −1) in a direction, then its value is 1 (resp. 
−1) for the reversed direction. In these situations, we just terms this mixed cycle as 
a positive (resp. negative) mixed cycle without mentioning any direction. A graph is 
positive (resp. negative) if each its mixed cycle is positive (resp. negative).

Lemma 9 ([11]). Let MG be a mixed graph with the underlying graph G. Then MG is 
positive if and only if MG can be obtained from G by a four-way switching.

Let G1 and G2 be two subgraphs of G. The symmetric difference of G1 and G2, denoted 
by G1 ⊕ G2, is defined to be a subgraph of G induced by the symmetric difference of 
E(G1) and E(G2). Let C and C ′ be two cycles of G. It is easy to see that C ⊕ C ′ is an 
even graph. If the intersection of C and C ′ is exactly a non-trivial path Pk(k ≥ 2), we say 
that cycle C ⊕ C ′ is obtained from C and C ′ by making a strong symmetric difference, 
and write C ⊕s C

′ instead of C ⊕ C ′.

Lemma 10 ([17, Lemma 16]). Let C, C1, C2 be three cycles of a simple graph G satisfying 
C = C1 ⊕s C

2. Under any given orientation of G, if h(C1) = h(C2) = 1 then h(C) = 1.

3. Mixed graphs with λ > −
√

3

Denote by Mn(−
√

3) the set of connected mixed graphs on n vertices with smallest 
Hermitian eigenvalue greater than −

√
3. In this part, we first get the underlying graphs 

of mixed graphs in Mn(−
√

3) by investigating various mixed induced subgraphs such as 
mixed triangles, mixed quadrangles and mixed pentagons and so on. Next, we completely 
determine Mn(−

√
3) for n ≥ 11.

Lemma 11 ([12]). Let MG be a mixed graph with smallest eigenvalue λ. If λ > −
√

3, then 
any mixed triangle in MG belongs to {K3, K

2,2
3 , K2,3

3 }. If λ ≥ −1.84, then any induced 
mixed quadrangle in MG belongs to {C1

4 , C
2
4 , C

3
4} (Fig. 1).

As similar to Lemma 11, by immediate calculating the Hermitian spectrum of mixed 
pentagons, one could easily verify that there are 10 types of mixed pentagons satisfied 
λ(MC5) > −

√
3, and we present them in Fig. 2 together with their smallest eigenvalues.
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Fig. 1. The mixed triangles and quadrangles and their smallest eigenvalues of Lemma 11.
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Fig. 2. The mixed pentagons and their smallest Hermitian eigenvalues of Lemma 12.

Lemma 12. Let MG be a mixed graph with smallest eigenvalue λ. If λ > −
√

3, then any 
mixed induced pentagon in MG belongs to {C5, C

2,1
5 , C2,2

5 , C2,3
5 , C2,4

5 , C4,1
5 , C4,2

5 , C4,3
5 , C4,4

5 ,

C4,5
5 }.

In what follows, we always denote C3 = {K3, K
2,2
3 , K2,3

3 }, C4 = {C1
4 , C

2
4 , C

3
4} and C5 =

{C5, C
2,1
5 , C2,2

5 , C2,3
5 , C2,4

4 , C4,1
5 , C4,2

5 , C4,3
5 , C4,4

5 , C4,5
5 }. The mixed triangles K3, K2,2

3 and 
K2,3

3 play an important role in determining the orientations of a mixed graph, especially 
when all induced cycles (if exist) of the underlying graph are triangles.

Remark 1. It is easy to see that C3 = [C3] and C5 = [C5], which are all positive. Moreover, 
all mixed graphs in C4 are negative.

By Lemma 9, we immediately have the following result.

Lemma 13. Let MG be a mixed graph. If G contains no induced cycle with length greater 
than 3 and each mixed triangle of MG belongs to C3 then MG ∈ [G].

For non-negative integers s, t, n with n = s + t, denote by Kn[s, t] the mixed graph 
obtained from Ks∪Kt by adding all arcs from the vertices of Ks to those of Kt. It is clear 
that Kn[s, t] is switching equivalent to Kn. Let MKn

be a mixed graph with underlying 
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graph Kn and n ≥ 3. Lemma 9 indicates that any mixed triangle of MKn
belongs to C3

if and only if MKn
∈ [Kn]. Furthermore, according to [6, Proposition 8.6], the following 

result holds.

Lemma 14 ([6]). Let MKn
be a mixed graph with underlying graph Kn and n ≥ 3. Then 

any mixed triangle of MKn
belongs to C3 if and only if MKn

∈ {Kn[s, t] | s, t ≥ 0, s + t =
n} if and only if MKn

∈ [Kn].

In what follows, we characterize the mixed graph MG with λ(MG) > −
√

3. We first 
determine the underlying graph of MG.

Lemma 15. If MG is a mixed graph with underlying graph G = Km,n, then λ(MG) ≤ −
√

3
except for G = K2, K1,2 or K2,2.

Proof. If λ(MG) > −
√

3, then G has no K1,3 as an induced subgraph since λ4(K1,3) =
−
√

3. This leads to G = K2, K1,2 or K2,2. �
By applying Lemma 11 and Lemma 13, we get the following result.

Lemma 16. If MG ∈ Mn(−
√

3) then G is H-free, where

H = {P5,K1,3,K2∇3K1,K2∇(K1 ∪K1,2),K2∇2K2,K2∇(K1 ∪K3),

K3∇(K1 ∪K2),K4∇K1,2,K1∇K2,2 = 2K1∇K1,2, F }

and F is the graph obtained from K2∇2K1 by attaching a pendent vertex to a vertex of 
degree 2 (see Fig. 4).

Proof. We prove this statement by contradiction. Suppose to the contrary that G con-
tains an induced graph H in H. Therefore, MG contains a mixed induced graph MH . 
Lemma 1 indicates that λ(MH) ≥ λ(MG) > −

√
3. Note that λ(P5) = λ(K1,3) = −

√
3, 

λ(K2∇3K1) = −2, λ(K2∇(K1∪K1,2) = −2, λ(K2∇2K2) = −1.828, λ(K2∇(K1∪K3)) =
−1.828, λ(K3∇(K1 ∪ K2)) = −1.804, λ(K4∇K1,2) = −1.742 and λ(F ) = −1.7757, 
which are all not greater than −

√
3. It yields that H = K1∇K2,2, and we label H as 

Fig. 3. Since λ(MH) > −
√

3, Lemma 11 implies all mixed triangles of MH belong to C3

and all quadrangles of MH belong to C4. Let C1 = MH [u1, u2, v], C2 = MH [u2, u3, v], 
C3 = MH [u3, u4, v] and C4 = MH [u1, u4, v]. Note that the quadrangle with vertices 
u1, u2, u3, v, denoted by C5, satisfies C5 = C1 ⊕s C2, and the quadrangle with ver-
tices u1, u4, u3, v, denoted by C6, satisfies C6 = C3 ⊕s C4 (see Fig. 3). Since Ci is 
positive for 1 ≤ i ≤ 4, Lemma 10 indicates that C5 and C6 are also positive. Using 
Lemma 10 again, MH [u1, u2, u3, u4] = C5 ⊕s C

6 is a positive induced quadrangle, con-
tradicts Lemma 11. �
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Fig. 3. The graphs used in Lemma 16.

For a mixed graph MG ∈ Mn(−
√

3), we divide into two cases to determine the 
underlying graph G, that is, G is P4-free or G is not P4-free.

Lemma 17. If MG ∈ Mn(−
√

3) and G is P4-free then G belongs to

{K2,2,K1∇K1,2,K2∇K1,2,K3∇K1,2,K2∇(K1 ∪K2), 2K2∇2K1, 2K3∇2K1, 2K4∇2K1,

(K1 ∪K2)∇2K1, (K1 ∪K3)∇2K1, (K1 ∪K4)∇2K1, (K2 ∪K3)∇2K1, (K2 ∪K4)∇2K1,

(K3 ∪K4)∇2K1}
⋃

{(Ks ∪Kt)∇K1 | s, t ≥ 0, s + t = n− 1}

Proof. We may assume that n ≥ 2 since there are nothing to prove when n = 1. From 
Lemma 3, we have G = X∇Y with |X|, |Y | ≥ 1. If both X and Y have no edge, 
then G = Ks,t and thus G ∈ {K2, K1,2, K2,2} due to Lemma 15, where both K2 =
(K1 ∪K0)∇K1 and K1,2 = (K1 ∪K1)∇K1 have the form (Ks ∪Kt)∇K1. Now we may 
assume that one of X and Y contains K2, say X. Therefore, Lemma 16 implies that 
Y is {P4, 3K1, K1 ∪K1,2, 2K2, K1 ∪K3, K1∇(K1 ∪K2), K2,2, K2∇K1,2}-free since G is 
P4-free. Thus Y ∈ {2K1, K1 ∪K2, K1,2, K1∇K1,2, Ks} due to Lemma 6.

If Y = K1,2, then Lemma 16 implies that X is {2K1, K4}-free. Thus, Lemma 4
means that X ∈ {K2, K3} since X contains K2. Therefore, G ∈ {K2∇K1,2, K3∇K1,2}. 
If Y = K1 ∪ K2, then Lemma 16 implies that X is {2K2, K3, 3K1, K1,2}-free. 
Thus Lemma 5 means that X ∈ {K2, K1 ∪ K2} since X contains K2. Note that, 
one may verify that λ(M(K1∪K2)∇(K1∪K2)) ≤ −

√
3 for any mixed graph with un-

derlying graph (K1 ∪ K2)∇(K1 ∪ K2) with the help of computer. Therefore, G =
K2∇(K1 ∪ K2). If Y = Ks with s ≥ 2, then Lemma 16 implies that X is 
{3K1, K1 ∪ K1,2, 2K2, K1 ∪ K3, P4, K1∇(K1 ∪ K2), K2,2, K1,3, K2∇K1,2}-free since G
is P4-free. Thus, Lemma 6 means that X ∈ {K1 ∪ K2, K1,2, K1∇K1,2, Kr | r ≥ 2}. 
It follows that G ∈ {(K1 ∪ K2)∇Ks, K1,2∇Ks, Kr∇Ks | s, r ≥ 2}. Since G is 
{K3∇(K1∪K2), K4∇K1,2}-free, we have G ∈ {(K1∪K2)∇K2, K1,2∇K2, K1,2∇K3, Kn |
n ≥ 4}, where Kn = (Kn−1 ∪ K0)∇K1. If Y = K1∇K1,2, then Lemma 16 im-
plies that X is {2K1, K3}-free. Thus, Lemma 4 means that X = K2 since X con-
tains K2. Therefore, G = K3∇K1,2. If Y = 2K1, then Lemma 16 implies that 
X is {3K1, K1,2, K5}-free. Thus, Lemma 7 means that X ∈ {K2, K3, K4, K1 ∪
K2, K1 ∪ K3, K1 ∪ K4, 2K2, K2 ∪ K3, K2 ∪ K4, 2K3, K3 ∪ K4, 2K4} since X con-
tains K2. Therefore, G ∈ {K1∇K1,2, K2∇K1,2, K3∇K1,2, (K1 ∪ K2)∇2K1, (K1 ∪
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K3)∇2K1, (K1∪K4)∇2K1, 2K2∇2K1, (K2∪K3)∇2K1, (K2∪K4)∇2K1, 2K3∇2K1, (K3∪
K4)∇2K1, 2K4∇2K1}.

In what follows, we consider the case of Y = K1, that is G = X∇K1. Since G is 
K1,3-free according to Lemma 16, we have X is 3K1-free and X has at most two con-
nected components. Suppose that X has two connected components, say X1 and X2

with |X1|, |X2| ≥ 1. Then both X1 and X2 are K1,2-free since otherwise X has an in-
duced 3K1, and so X1 and X2 are complete graphs. Therefore, G = (Ks ∪ Kt)∇K1
with s + t = n − 1 and s, t ≥ 1. Next we may assume that X is connected. Since 
X is P4-free, we have X = X1∇Y1 with |X1|, |Y1| ≥ 1. If both X1 and Y1 have no 
edge, then X is a bipartite graph and so X ∈ {K2, K1,2, K2,2} due to Lemma 15. 
Note that G is K1∇K2,2-free due to Lemma 16. Thus, G ∈ {K3, K1,2∇K1}. Now we 
may assume X1 contains K2. Therefore, Lemma 16 implies that Y1 is {P4, 3K1, K1 ∪
K1,2, 2K2, K1 ∪ K3, K1∇(K1 ∪ K2), K2,2, K2∇K1,2}-free since G is P4-free. Thus Y1 ∈
{2K1, K1 ∪ K2, K1,2, K1∇K1,2, Ks} due to Lemma 6. If Y1 = K1,2, then Lemma 16
implies that X1 is {2K1, K3}-free. Thus, Lemma 4 means that X1 = K2 since X1 con-
tains K2. Therefore, G = K3∇K1,2. If Y1 = K1 ∪ K2, then G = X1∇(K1 ∪ K2)∇K1. 
Lemma 16 implies that X1 is K2-free, a contradiction. If Y1 = K1∇K1,2, then G =
X1∇(K1∇K1,2)∇K1 = X1∇K1,2∇K2. Lemma 16 implies that X1 is K2-free, a contra-
diction. If Y1 = 2K1, then G = X1∇2K1∇K1 = X1∇K1,2. Lemma 16 implies that X1 is 
{2K1, K4}-free. Thus, Lemma 4 means that X1 ∈ {K2, K3} since X1 contains K2. There-
fore, G ∈ {K2∇K1,2, K3∇K1,2}. If Y1 = Ks, then G = X1∇Ks+1. Lemma 16 implies that 
X1 is {3K1, K1 ∪K1,2, 2K2, K1 ∪K3, P4, K1∇(K1 ∪K2), K2,2, K1,3, K2∇K1,2}-free since 
G is P4-free. Thus, Lemma 6 means that X1 ∈ {K1 ∪K2, K1,2, K1∇K1,2, Kr | r ≥ 2}. 
It follows that G ∈ {(K1 ∪K2)∇Ks+1, K1,2∇Ks+1, Kr∇Ks+1 | s ≥ 1, r ≥ 2}. Since G is 
{K3∇(K1∪K2), K4∇K1,2}-free, we have G ∈ {(K1∪K2)∇K2, K1,2∇K2, K1,2∇K3, Kn |
n ≥ 4}.

The proof is completed. �
For non-negative integers l, s, t, let P4(l, s, t) be the graph obtained from Kl ∪Ks ∪

(Kt∇P4) by adding all edges between V (Kl) and V (Kt) ∪{u1, u2} and all edges between 
V (Ks) and {u2, u3}, where {u1, u2, u3, u4} is the vertex set of the P4 with ui ∼ ui+1
for 1 ≤ i ≤ 3 (see Fig. 4). Clearly, |V (P4(l, s, t)| = 4 + l + s + t and P4(0, 0, 0) = P4. 
For non-negative integers x, y, z, let K(x, y, z) be the graph obtained by identifying 
v′ ∈ V (Kx) and v′′ ∈ V (Ky), and then attaching z pendent vertices to distinct vertices 
of V (Ky) \{v′′} (see Fig. 4). Clearly, |V (K(x, y, z))| = x +y+z−1 and K(1, n, 0) = Kn.

Lemma 18. If MG ∈ Mn(−
√

3) and G contains an induced P4, then G belongs to

{P4, P4(1, 0, 0), P4(2, 0, 0), P4(3, 0, 0), P4(0, 0, 1)=K1∇P4, P4(0, 0, 2)=K2∇P4, P4(2, 1, 0),

P4(2, 2, 0), P4(2, 3, 0), P4(2, 4, 0), P4(0, 1, 1), P4(0, 2, 1), P4(1, 0, 1), P4(1, 1, 1),

G10, G11, G14, G18} ∪ {K(l, s + 2, k + 1) | 2 ≤ l ≤ 3, s ≥ 1, k ≥ 0} ∪ {Ks∇C5 | s ≥ 0} ,
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Fig. 4. The graphs used in Lemma 18.

where G10, G11, G14 and G18 are shown in Fig. 4.

Proof. Since G contains P4, we have n ≥ 4. If n = 4 then G = P4. Now we assume 
n ≥ 5. According to Lemma 16, G is H-free where H is given in Lemma 16. This fact 
will be used frequently. In what follows, we divide into two cases to discuss.

Case 1. G contains induced C5.
It is trivial that G = C5 when n = 5. Now we assume that n ≥ 6 and the vertex set of 

the induced C5 is U = {u1, u2, u3, u4, u5} with ui ∼ ui+1 (mod 5) for 1 ≤ i ≤ 5. Denote 
by X = {x ∈ V (G) \U | NU (x) �= ∅} and Y = V (G) \ (U ∪X). Since G is connected, we 
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have X �= ∅ and assume x ∈ X. If |NU (x)| = 1, say NU (x) = {u1}, then G[u1, u2, x, u5] =
K1,3, a contradiction. If |NU (x)| = 2 then there are two types of structures, say NU (x) =
{u1, u2} or NU (x) = {u1, u3}. If the former case occurs then G[x, u2, u3, u4, u5] = P5, 
a contradiction; if the latter case occurs, then G[u1, u2, x, u5] = K1,3, a contradiction. 
If |NU (x)| = 3 then there are also two types of structures, say NU(x) = {u1, u2, u3}
or NU (x) = {u1, u2, u4}. If the former case occurs, then G[x, u1, u2, u3, u4] = F , a 
contradiction; if the latter case occurs, then G[u4, u3, x, u5] = K1,3, a contradiction. If 
|NU (x)| = 4, say NU (x) = {u1, u2, u3, u4}, then G[x, u1, u2, u3, u5] = F , a contradiction. 
Therefore, NU (x) = U for any x ∈ X. Moreover, for any x1, x2 ∈ X, we have x1 ∼ x2. 
Otherwise, G[x1, u1, x2, u3, u2] = K1∇K2,2, a contradiction. Next we claim that Y = ∅. 
Otherwise, there exists y ∈ Y such that y ∼ x for some x ∈ X because G is connected. 
It leads to that G[u1, y, u3, x] = K1,3, a contradiction. Hence G = Ks∇C5 for s ≥ 0.

Case 2. G is C5-free.
Denote by E the set of connected induced subgraphs of G on 5 vertices. We will get 

the structure of G by investigating E . We divide the following two subcases to discuss.

Subcase 2.1. For any graph E ∈ E , E contains at most one of the induced P4 or induced 
C4.

Note that G contains induced P4. Assume that the vertex set of the induced P4 is 
U = {u1, u2, u3, u4} with ui ∼ ui+1 for 1 ≤ i ≤ 3. Denote by X = {x ∈ V (G) \ U |
NU (x) �= ∅} and Y = V (G) \ (U ∪ X). Since G is connected, we have X �= ∅. Clearly, 
for any x ∈ X, G[U ∪ {x}] ∈ E contains induced P4 and thus contains no induced 
C4. Note that G is {P5, K1,3, F}-free. It leads to that G[U ∪ {x}] has three types of 
structures, denoted by H1 = P4(1, 0, 0), H2 = P4(0, 1, 0) and H3 = P4(0, 0, 1) as shown 
in Fig. 4. Let X1 = {x ∈ X | G[U ∪ {x}] = H1}, X2 = {x ∈ X | G[U ∪ {x}] = H2} and 
X3 = {x ∈ X | G[U ∪ {x}] = H3}. Denote by l = |X1|, s = |X2| and t = |X3|.

For any x1, x′
1 ∈ X1, the induced subgraph G[U∪{x1, x′

1}] has four types of structures, 
denoted by Gi for 1 ≤ i ≤ 4 as shown in Fig. 4. Note that G1 contains an induced 
K1,3, λ(MG2) = λ(G2) = −

√
3 and G3 contains an induced subgraph on 5 vertices 

which contains both induced P4 and induced C4. Therefore, G[U ∪ {x1, x′
1}] = G4. It 

means that G[X1] = Kl and G[U ∪ X1] = Kl+2 · K2 is the graph obtained by adding 
an edge between the complete graph Kl+2 and K2. Moreover, by Lemma 13, we have 
λ(MG[U ∪ X1]) = λ(Kl+2 · K2) ≤ λ(K6 · K2) = −1.735 < −

√
3 when l ≥ 4. Thus, we 

have l ≤ 3.
For any x2, x′

2 ∈ X2, the induced subgraph G[U∪{x2, x′
2}] has two types of structures, 

denoted by G5 and G6 as shown in Fig. 4. Note that G5 contains induced K1,3. Therefore, 
G[U ∪ {x2, x′

2}] = G6. It means that G[X2] = Ks.
For any x3, x′

3 ∈ X3, we have G[U ∪ {x3, x′
3}] ∈ {2K1∇P4, K2∇P4} and thus G[U ∪

{x3, x′
3}] = K2∇P4 since G is 2K1∇P3-free. It means that G[X3] = Kt and G[U ∪X3] =

Kt∇P4. Note that G is K3∇(K1 ∪K2)-free. We have G is K3∇P4-free, and thus t ≤ 2.
For any x1 ∈ X1 and x2 ∈ X2, we have G[U ∪{x1, x2}] ∈ {G7, G8} as shown in Fig. 4. 

Note that G8 contains induced F . Therefore, G[U ∪ {x1, x2}] = G7. It means that there 
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Table 1
The smallest eigenvalues of graphs in P.

P : P4(0, 1, 2) P4(0, 3, 1) P4(2, 0, 1) P4(1, 0, 2) P4(2, 5, 0) P4(3, 1, 0) P4(1, 2, 1)

λ(P ): -1.85 -1.76 -1.76 -1.84 -1.733 −
√

3 −
√

3

is no edge between X1 and X2. Similarly, each vertex in X1 is adjacent to every vertex 
of X3 and there is no edge between X2 and X3.

By the arguments above, the induced subgraph G[U ∪X] = P4(l, s, t) with l ≤ 3 and 
t ≤ 2. We will further analyze the triple (l, s, t) by investigating some more forbidden 
subgraphs of G.

Denote by P = {P4(0, 1, 2), P4(0, 3, 1), P4(2, 0, 1), P4(1, 0, 2), P4(2, 5, 0), P4(3, 1, 0),
P4(1, 2, 1)}. For any P ∈ P, if P is an induced subgraph of G, then MP is an in-
duced mixed subgraph of MG, and thus λ(MP ) > −

√
3. Therefore, each mixed triangle 

in MP belongs to C3. Lemma 13 indicates that λ(MP ) = λ(P ). However, by immediate 
calculations, λ(P ) ≤ −

√
3 for any P ∈ P (see Table 1). It means that G is P-free. Since 

X �= ∅, we have l+s + t > 0. Suppose that there are exactly two of l, s, t being 0. If l > 0
then (l, s, t) ∈ {(1, 0, 0), (2, 0, 0), (3, 0, 0)}. If s > 0 then (l, s, t) ∈ {(0, s, 0) | s ≥ 1}. If 
t > 0 then (l, s, t) ∈ {(0, 0, 1), (0, 0, 2)}. Suppose that there is exactly one of l, s, t being 
0. If l = 0 then we have (l, s, t) ∈ {(0, 1, 1), (0, 2, 1)} because G is {P4(0, 1, 2), P4(0, 3, 1)}-
free. If s = 0 then we have (l, s, t) = (1, 0, 1) because G is {P4(2, 0, 1), P4(1, 0, 2)}-free. 
If t = 0 then we have (l, s, t) ∈ {(1, s, 0) | s ≥ 1} ∪ {(2, s, 0) | 1 ≤ s ≤ 4} be-
cause G is {P4(2, 5, 0), P4(3, 1, 0)}-free. Suppose that none of l, s, t is 0. Then we have 
(l, s, t) = (1, 1, 1) because G is {P4(1, 2, 1), P4(2, 0, 1), P4(1, 0, 2)}-free.

Next, we consider Y . If Y = ∅ then G = G[U ∪X] belongs to

{P4(1, 0, 0), P4(2, 0, 0), P4(3, 0, 0), P4(0, 0, 1), P4(0, 0, 2), P4(0, 1, 1), P4(0, 2, 1), P4(1, 0, 1),

P4(1, 1, 1)} ∪ {P4(1, s, 0) | s ≥ 1} ∪ {P4(0, s, 0) | s ≥ 1} ∪ {P4(2, s, 0) | 1 ≤ s ≤ 4}.

In what follows, we assume Y �= ∅ and |Y | = k ≥ 1.
Since G is connected, there exists y ∈ Y such that NX(y) �= ∅. If y ∼ x1 for some 

x1 ∈ X1 then G[y, x1, u2, u3, u4] = P5, a contradiction; if y ∼ x3 for some x3 ∈ X3
then G[y, x3, u1, u4] = K1,3, a contradiction. It means that NX(Y ) ⊆ X2. Moreover, for 
some y ∈ Y , if NX2(y) = ∅ then the distance dG(y, x2) ≥ 2 for any x2 ∈ X2. It leads 
to that dG(y, u4) ≥ 4, a contradiction. It yields that, for any y ∈ Y , we have y ∼ x2
for some x2 ∈ X2, and thus s = |X2| ≥ 1. Besides, for any y1, y2 ∈ NY (x2), we have 
y1 ∼ y2 since otherwise G[y1, y2, x2, u2] = K1,3, a contradiction. It means that NY (x2)
is a clique for any x2 ∈ X2. Moreover, for any y ∈ Y , we have |NX2(y)| = 1 otherwise 
there exist x2, x′

2 ∈ NX2(y) and thus G[y, x2, x′
2, u2, u1] = F , a contradiction. Now we 

claim that t = 0. Otherwise, G[y, x2, u2, u3, x3] = F for some y ∈ Y , x2 ∈ X2 with 
y ∼ x2 and x3 ∈ X3, which is impossible. Note that l ≤ 2 when s ≥ 1 by the form of 
G[U ∪X] = P4(l, s, t). If l = 2 then λ(MG[X1∪U∪{x2,y}]) = λ(G[X1∪U ∪{x2, y}]) = −

√
3

for some y ∈ Y , x2 ∈ X2 and y ∼ x2, which is impossible. Therefore, we have l ≤ 1. If 
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l = 1, then |NY (x2)| ≤ 1 for any x2 ∈ X2. Otherwise, there exist y1, y2 ∈ NY (x2) for 
some x2 ∈ X2, and thus G[u1, x1, u2, x2, y1, y2] = G2, which is impossible. Therefore, G is 
obtained from P4(1, s, 0) by attaching k pendent vertices to distinct vertices of X2, that 
is, G = K(3, s +2, k+1) with s, k ≥ 1. Now assume that l = 0. If there exists x2 ∈ X2 such 
that |NY (x2)| ≥ 2 then G[NY (x2) ∪X2∪{u1, u2, u3}] = P4(|NY (x2) −1|, s, 0) = P4(l′, s, 0)
with l′ ≥ 1, which has been discussed before. Therefore, we may assume |NY (x2)| ≤ 1
for any x2 ∈ X2. Thus, G is obtained from P4(0, s, 0) by attaching k pendent vertices to 
distinct vertices of X2, that is, G = K(2, s + 2, k + 1) with s, k ≥ 1.

Note that P4(0, s, 0) = K(2, s +2, 1) and P4(1, s, 0) = K(3, s +2, 1). Thus, we conclude 
that G belongs to

{P4(1, 0, 0), P4(2, 0, 0), P4(3, 0, 0), P4(0, 0, 1), P4(0, 0, 2), P4(0, 1, 1), P4(0, 2, 1), P4(1, 0, 1),

P4(1, 1, 1)} ∪ {K(l, s + 2, k + 1) | 2 ≤ l ≤ 3, s ≥ 1, k ≥ 0} ∪ {P4(2, s, 0) | 1 ≤ s ≤ 4}.

Subcase 2.2. There exists E ∈ E such that E contains both induced P4 and induced C4.
Let the graphs G9, G10, . . . , G19 be the graphs shown in Fig. 4. To prove this subcase, 

we need the following claims.

Claim 1. G contains an induced G10.

Proof of Claim 1. Since E contains both induced P4 and induced C4, we have E ∈
{G9, G10}. It is clear that G9 is not an induced subgraph of G because G9 contains an 
induced K1,3. Thus, E = G10 is an induced G10. �
Claim 2. If H is a connected induced subgraph of G on 6 vertices containing G10 then 
H ∈ {G11, G14}.

Proof of Claim 2. Assume that V (H) = {u1, u2, u3, u4, u5, x} and {u1, u2, u3, u4, u5} in-
duces the subgraph E = G10 as shown in Fig. 4. Keep in mind that G[u1, u2, u3, u4] =
G[u1, u5, u4, u3] = P4. Now we consider the induced subgraphs G[u1, u2, u3, u4, x],
G[u1, u5, u4, u3, x]. If they do not contain induced C4, then we have

G[u1, u2, u3, u4, x], G[u1, u5, u4, u3, x] ∈ {P4(1, 0, 0), P4(0, 1, 0), P4(0, 0, 1)}

according to the argument in Subcase 2.1. If they contain induced C4, then each 
of them is either G9 or G10. Furthermore, since G contains no induced G9, we 
have both of them are G10. It yields that G[u1, u2, u3, u4, x], G[u1, u5, u4, u3, x] ∈
{P4(1, 0, 0), P4(0, 1, 0), P4(0, 0, 1), G10}, and thus H ∈ {G11, G12, G13, G14, G15}. How-
ever, one may check that λ(MH′) ≤ −

√
3 whenever H ′ ∈ {G12, G13} with the help of 

computer,1 and G15 contains an induced K1∇K2,2. Thus, H ∈ {G11, G14}. �
1 The graph H′ contains 9 edges, and thus there are at most 39 types of MH′ . The spectra of such mixed 

graphs could be obtained just by, for example, Matlab.
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Claim 3. If H is a connected induced subgraph of G on 7 vertices containing G10 then 
H = G18.

Proof of Claim 3. According Claim 2, we may assume that V (H) = {u1, u2, u3, u4, u5, x,
y} such that {u1, u2, u3, u4, u5} induces the subgraph E = G10 and {u1, u2, u3, u4, u5, x}
induces the subgraph H0 ∈ {G11, G14}. We first assume that H0 = G11. We con-
clude that NV (E)(y) �= ∅. Otherwise, y ∼ x, and thereby Claim 2 indicates that 
G[u2, u3, u4, u5, x, y] ∈ {G11, G14} because G[u2, u3, u4, u5, x] = G10. It is impossible 
as y is a pendent vertex in G[u2, u3, u4, u5, x, y]. According to Claim 2 again, we have 
G[V (E) ∪{y}] ∈ {G11, G14} due to NV (E)(y) �= ∅. It leads to that G[u2, u3, u4, u5, x, y] /∈
{G11, G14}. By noticing that G[u2, u3, u4, u5, x] = G10 and NG[u2,u3,u4,u5,x](y) �= ∅, 
Claim 2 indicates that G[u2, u3, u4, u5, x, y] ∈ {G11, G14}, a contradiction. Next, we as-
sume that H0 = G14. Similarly, we conclude that NV (E)(y) �= ∅, and thus G[V (E) ∪{y}] ∈
{G11, G14}. If G[V (E) ∪ {y}] = G11 then G[u2, x, u4, u5, y] = G9 when x � y, and 
G[u2, u3, x, u5, y] = F when x ∼ y, which are both impossible. If G[V (E) ∪ {y}] = G14

then G[V (E) ∪ {x, y}] has four types of structures, denoted by G16, G17, G18 and G19

as shown in Fig. 4. Note that G[u1, x, u3, u4, u5] = G10 and NG[u1,x,u3,u4,u5](y) �= ∅. We 
have G[u1, x, u3, u4, u5, y] ∈ {G11, G14} by Claim 2, which only occurs in the case of 
G[V (E) ∪ {x, y}] = G18. Hence H = G[V (E) ∪ {x, y}] = G18. �

Now we consider the structure of G. If n = 5 then Claim 1 means that G = G10. If 
n = 6 then G ∈ {G11, G14} according to Claims 1 and 2. If n = 7 then G = G18 accord-
ing to Claims 1 and 3. If n ≥ 8 then Claims 1 and 3 indicates that there exist vertices 
u1, u2, . . . , u5, x, y, z such that {u1, u2, . . . , u5} induces E = G10, {u1, u2, . . . , u5, x, y} in-
duces H = G18 and NV (H)(z) �= ∅. By the symmetry of the vertices x and y in H, we may 
assume that NV (E)∪{x}(z) �= ∅. Therefore, Claim 3 implies that G[u1, u2, . . . , u5, x, z] =
G18, and thereby G[u1, u2, . . . , u5, y, z] �= G18, a contradiction.

The proof is completed. �
Combining Lemmas 17 and 18, one of our main result is obtained.

Theorem 1. If MG ∈ Mn(−
√

3) then G belongs to G0 ∪ G1 ∪ G2 ∪ G3, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G0 = {K2,2,K1∇K1,2,K2∇K1,2,K3∇K1,2,K2∇(K1 ∪K2), 2K2∇2K1, 2K3∇2K1,

2K4∇2K1, (K2 ∪K1)∇2K1, (K1 ∪K3)∇2K1, (K1 ∪K4)∇2K1, (K2 ∪K3)∇2K1,

(K2 ∪K4)∇2K1, (K3 ∪K4)∇2K1, P4, P4(1, 0, 0), P4(2, 0, 0), P4(3, 0, 0),
P4(0, 0, 1) = K1∇P4, P4(0, 0, 2) = K2∇P4, P4(2, 1, 0), P4(2, 2, 0), P4(2, 3, 0),
P4(2, 4, 0), P4(0, 1, 1), P4(0, 2, 1), P4(1, 0, 1), P4(1, 1, 1), G10, G11, G14, G18} ,

G1 = {(Ks ∪Kt)∇K1 | s, t ≥ 0, s + t = n− 1} ,
G2 = {Ks∇C5 | s ≥ 0} ,
G = {K(l, s + 2, k + 1) | 2 ≤ l ≤ 3, s ≥ 1, k ≥ 0}.
3
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In what follows, we determine MG by considering its underlying graphs as given in 
Theorem 1.

Theorem 2. Let MG be a mixed graph with underlying graph G = (Ks ∪Kt)∇K1. Then, 
λ(MG) > −

√
3 if and only if MG ∈ M1 ∪M2 ∪M3 ∪M4, where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M1 = [Kn] = {Kn[s, t] | s, t ≥ 0, s + t = n},

M2 = [2K4∇K1] ∪ [(K5 ∪K4)∇K1],

M3 =
⋃

3≤s≤9
[(Ks ∪K3)∇K1],

M4 = [(Ks ∪K2)∇K1] ∪ [(Ks ∪K1)∇K1].

Proof. We first consider the spectrum of G. Assume that π: V (G) = V1 ∪{v} ∪V2 is the 
partition such that G[V1 ∪ {v}] = Ks+1 and G[V2 ∪ {v}] = Kt+1. The Hermitian matrix 
of G is

H(G) =
(
Js − Is 1s 0s×t

1T
s 0 1T

t
0t×s 1t Jt − It

)
,

where J , I, 1 and 0 are respectively the all-one matrix, identity matrix, all-one vector 
and zero matrix with the corresponding size. Therefore, Lemma 2 indicates that π is an 
equitable partition with quotient matrix

Hπ =
(
s− 1 1 0
s 0 t
0 1 t− 1

)
.

Assume that V1 = {v1, v2, . . . , vs} and V2 = {u1, u2, . . . , ut}. For 2 ≤ j ≤ s and 2 ≤ k ≤ t, 
let δ1,j ∈ Rs be the vector indexed by V1 such that δ1,j(v1) = 1, δ1,j(vj) = −1 and 
δ1,j(vj′) = 0 for j′ /∈ {1, j} and let δ2,k ∈ Rt be the vector indexed by V2 such that 
δ2,k(u1) = 1, δ2,k(uk) = −1 and δ2,k(uk′) = 0 for k′ /∈ {1, k}. It is easy to see that 
H(G)(δT1,j 0)T = −(δT1,j 0)T and H(G)(0 δT2,k)T = −(0 δT2,k)T for any j and k, and thus 
H(G) has an eigenvalue −1 with multiplicity at least s + t − 2 = n − 3. Lemma 2 implies 
that the other three eigenvalues of G are just the roots ε1 ≥ ε2 ≥ ε3 of the function 
fs,t(x) = det(xI −Hπ) = x3 + (2 − t − s)x2 + (st − 2t − 2s + 1)x − s − t + 2st. It is clear 
that fs,t(0) = 2st − s − t ≥ 0.

Now we show the necessity. If s = 0 or t = 0 then G = Kn. Since λ(MG) > −
√

3, 
Lemma 11 means that any mixed triangle of MG belongs to C3. Hence, Lemma 14
indicates that MG = MKn

∈ {Kn[s, t] | s, t ≥ 0, s + t = n} = [Kn] = M1. Suppose 
G = (Ks ∪Kt)∇K1 with s, t ≥ 1 and s ≥ t. Note that G contains no induced cycle with 
length greater than 3, Lemma 13 indicates that MG ∈ [G] and thus Sp(MG) = Sp(G). 
Therefore, the eigenvalues of MG are the eigenvalues of H(G). Note that ε1 > 0. By the 
images of the function fs,t(x), ε3 > −

√
3 if and only if fs,t(−

√
3) < 0. If t ≥ 5 then
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fs,t(−
√

3) = (2 −
√

3)(st− 2s− 2t) + 6 − 4
√

3 ≥ (2 −
√

3)t + 6 − 4
√

3 ≥ 16 − 9
√

3 ≥ 0,

and thus ε3 ≤ −
√

3. Therefore, we may assume t ≤ 4. Note that fs,4(−
√

3) = (4 −2
√

3)s +
4
√

3−10 < 0 if and only if 4 ≤ s ≤ 5, fs,3(−
√

3) = (2 −
√

3)s +2
√

3−6 < 0 if and only if 
3 ≤ s ≤ 9, fs,2(−

√
3) = −2 < 0 for any s ≥ 2, and fs,1(−

√
3) = (

√
3−2)s −2 −2

√
3 < 0

for any s ≥ 1. It leads to that MG ∈ M2 ∪M3 ∪M4.
Next, we show the sufficiency. For any MG ∈ M1, Lemma 14 implies that λ(MG) =

−1. For any MG ∈ M2, its smallest eigenvalue is the smallest root of fs,4(x) = x3 −
(2 + s)x3 + (2s − 7)x + 7s − 4 for 4 ≤ s ≤ 5. Note that fs,4(0) = 7s − 4 > 0 and 
fs,4(−

√
3) = (4 − 2

√
3)s + 4

√
3 − 10 < 0. The smallest root of fs,4(x) is greater than 

−
√

3 by the image of fs,4(x), and thus λ(MG) > −
√

3. For any MG ∈ M3, it smallest 
eigenvalue is the smallest root of fs,3(x) = x3−(1 +s)x2 +(s −5)x +5s −3 for 3 ≤ s ≤ 9. 
Note that fs,3(0) = 5s − 3 > 0 and fs,3(−

√
3) = (2 −

√
3)s + 2

√
3− 6 < 0. The smallest 

root of fs,3(x) is greater than −
√

3 by the image of fs,3(x), and thus λ(MG) > −
√

3. 
For MG ∈ M4, if MG ∈ [(Ks ∪ K2)∇K1], its smallest eigenvalue is the smallest root 
of fs,2(x) = x3 − sx2 − 3x + 3s − 2 for s ≥ 2; if MG ∈ [(Ks ∪ K1)∇K1], its smallest 
eigenvalue is the smallest root of fs,1(x) = x3 − (s − 1)x2 − (s + 1)x + s − 1 for s ≥ 1. 
Note that fs,2(0) = 3s − 2, fs,1(0) = s − 1 ≥ 0, and fs,2(−

√
3) = −2, fs,1(−

√
3) =

(
√

3− 2)s − 2 − 2
√

3 < 0. The smallest roots of fs,2(x) and fs,1(x) are greater than −
√

3
by the image of them, and thus λ(MG) > −

√
3.

The proof is completed. �
Theorem 3. Let MG be a mixed graph with G ∈ {K(l, s + 2, k + 1) for 2 ≤ l ≤ 3, s ≥ 1
and k ≥ 0. Then λ(MG) > −

√
3 if and only if MG ∈ [G].

Proof. Firstly, we show the necessity. Since λ(MG) > −
√

3, Lemma 11 means that 
any mixed triangle of MG belongs to C3. Note that G contains no induced cycle with 
length greater than 3, Lemma 13 indicates that MG ∈ [G]. In what follows, we show the 
sufficiency. Note that G = K(2, s +2, k+1) could be obtained by attaching k+2 pendent 
vertices to distinct vertices of Ks+2. Let π : V (G) = V1∪V2∪V3 be the partition of V (G), 
where V1 is the set of vertices with degree s + 2, V2 is the set of vertices with degree 
s + 1 and V3 is the set of pendent vertices. Clearly, |V1| = |V3| = k + 2 and |V2| = s − k. 
The Hermitian matrix of G is

H(G) =
(
Jk+2 − Ik+2 J(k+2)×(s−k) Ik+2
J(s−k)×(k+2) Js−k − Is−k 0(s−k)×(k+2)

Ik+2 0(k+2)×(s−k) 0(k+2)×(k+2)

)
,

where J , I and 0 are respectively the all-one matrix, identity matrix and zero matrix with 
the corresponding size. Therefore, Lemma 2 indicates that π is an equitable partition 
with quotient matrix

Hπ =
(
k + 1 s− k 1
k + 2 s− k − 1 0

)
.

1 0 0
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Assume that V2 = {u1, u2, . . . , us−k}. For 2 ≤ b ≤ s −k, let δ2,b be the vector indexed 
by V2 such that δ2,b(u1) = 1, δ2,b(ub) = −1 and δ2,b(ub′) = 0 for b′ /∈ {1, b}. It is easy to 
see that H(G)(0 δT2,b 0)T = −(0 δT2,b 0)T for any 2 ≤ b ≤ s − k. It means that −1 is an 
eigenvalue of H(G) with multiplicity at least s − k − 1.

Assume that V1 = {v1, v2, . . . , vk+2} and V3 = {w1, w2, . . . , wk+2}. For 2 ≤ a, c ≤ k+2, 
let δ1,a be the vector indexed by V1 such that δ1,a(v1) = −1−

√
5

2 , δ1,a(va) = 1+
√

5
2 and 

δ1,a(va′) = 0 for a′ /∈ {1, a}; let δ3,c be the vector indexed by V3 such that δ3,c(w1) = 1, 
δ3,c(wc) = −1 and δ3,c(wc′) = 0 for c′ /∈ {1, c}. It is easy to verify that, for any 2 ≤ a ≤
k + 2,

H(G)(δT1,a 0 δT3,a)T = −1 −
√

5
2 (δT1,a 0 δT3,a)T .

It yields that −1−
√

5
2 is an eigenvalue of H(G) with multiplicity at least k + 1.

For 2 ≤ a ≤ k + 2, let η1,a(v1) = −1+
√

5
2 , η1,a(va) = 1−

√
5

2 and η1,a(va′) = 0 for 
a′ /∈ {1, a}. It is easy to verify that

H(G)(ηT1,a 0 δT3,a)T = −1 +
√

5
2 (ηT1,a 0 δT3,a)T .

It indicates that −1+
√

5
2 is an eigenvalue of H(G) with multiplicity at least k + 1.

Now Lemma 2 implies that the other three eigenvalues of G are just the roots ε1 ≥
ε2 ≥ ε3 of the function f(x) = det(xI − Hπ) = x3 − sx2 − (s + 2)x + s − k − 1. Note 
that ε1 > 0, f(−1) = s − k ≥ 0 and f(−

√
3) = −(2 −

√
3)s − k−

√
3− 1 < 0. Therefore, 

ε3 > −
√

3 for any s ≥ 1 and k ≥ 0, that is λ(MG) = λ(G) > −
√

3. Similarly, for 
G = K(3, s + 2, k + 1), we have λ(MG) > −

√
3 for any s ≥ 1 and k ≥ 0. �

Theorem 4. Let MG be a mixed graph with underlying graph G = Ks∇C5. If each mixed 
triangle of MG belongs to C3 and each mixed induced pentagon of MG belongs to C5 then 
MG ∈ [G]. Furthermore, λ(MG) > −

√
3 if and only if MG ∈ [Ks∇C5] with s ≤ 2.

Proof. If each mixed triangle of MG belongs to C3 and each mixed induced pentagon of 
MG belongs to C5, then MG is positive and thus MG ∈ [G] by Lemma 9.

Let π : V (Ks) ∪ V (C5) be a partition of V (G). The Hermitian matrix of G is

H(G) =
(
Js − Is Js×5
J5×s H(C5)

)
,

where J and I are respectively the all-one matrix and identity matrix with the cor-
responding size. Therefore, Lemma 2 indicates that π is an equitable partition with 
quotient matrix

Hπ =
(
s− 1 5
s 2

)
.
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Assume that V (Ks) = {v1, v2, . . . , vs}. For 1 < j ≤ s, let δj ∈ Rs be the vector indexed 
by V (Ks) such that δj(v1) = 1, δj(vj) = −1 and δj(vj′) = 0 for j′ /∈ {1, j}. It is 
easy to see that H(G)(δTj 0)T = −(δTj 0)T for any j. It’s well known that the vectors 
θk = (1 ωk ω2k ω3k ω4k)T for 1 ≤ k ≤ 4 are eigenvectors of H(C5) where ω = e

2πi
5 and the 

corresponding eigenvalues are μk = ωk+ω4k = 2 cos(2kπ/5) > −
√

3. Note that 1T θk = 0. 
We have H(G)(0 θTi )T = μi(0 θTi )T . Therefore, H has eigenvalues −1 with multiplicity 
at least s −1 and μi for 1 ≤ i ≤ 4. Lemma 2 implies that the other 2 eigenvalues of G are 
just the roots ε1 ≥ ε2 of the function f(x) = det(xI−Hπ) = x2−(s +1)x −(3s +2). Note 
that ε1 > 0. Since f(−

√
3) = −(3 −

√
3)s +

√
3+1 > 0 if and only if s < 1+

√
3

3−
√

3 ≈ 2.1547, 
we have ε2 > −

√
3 if and only if s ≤ 2. �

Now we are ready to present our main result.

Theorem 5. Let MG be a connected mixed graph on n vertices with n ≥ 11. Then 
λ(MG) > −

√
3 if and only if MG ∈ H1 ∪H2 ∪H3 ∪H4 ∪H5 ∪H6, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 =
⋃

n≥11
[Kn],

H2 = [(K7 ∪K3)∇K1] ∪ [(K8 ∪K3)∇K1] ∪ [(K9 ∪K3)∇K1],
H3 =

⋃
s≥8

[(Ks ∪K2)∇K1],

H4 =
⋃
s≥9

[(Ks ∪K1)∇K1],

H5 =
⋃

s+k≥7
[K(2, s + 2, k + 1)],

H6 =
⋃

s+k≥6
[K(3, s + 2, k + 1)].

Proof. For MG ∈ ∪1≤i≤4Hi, Theorem 2 implies that λ(MG) > −
√

3. From Theorem 3, 
each graph in H5 ∪H6 has smallest eigenvalue greater than −

√
3. The sufficiency holds.

In what follows, we show the necessity. From Theorem 1, the underlying graph G
with |V (G)| ≥ 11 belongs to {(Ks ∪ Kt)∇K1 | s, t ≥ 0, s + t ≥ 10} 

⋃
{Ks∇C5 | s ≥

6} 
⋃
{K(l, s + 2, k + 1 | 2 ≤ l ≤ 3, s + k + l ≥ 9). If G = (Ks ∪ Kt)∇K1 with s, t ≥ 0

and s + t ≥ 10, then MG ∈ H1 ∪ H2 ∪ H3 ∪ H4 due to Theorem 2. If G = Ks∇C5, 
then Theorem 4 indicates s ≤ 2, which contradict s ≥ 6. If G = K(l, s + 2, k + 1) with 
2 ≤ l ≤ 3 and s + k + l ≥ 9, then MG ∈ H5 ∪H6 due to Theorem 3. This completes the 
proof. �
4. Conclusion

Let Mn(−
√

3) be the set of all mixed graphs on n vertices with smallest eigenvalue 
greater than −

√
3. In this paper, we first determine the underlying graphs of the mixed 

graphs in Mn(−
√

3), which consists of Gi for 0 ≤ i ≤ 3 where G0 consists of 32 scattered 
graphs and Gi are infinite classes of graphs for 1 ≤ i ≤ 3. Furthermore, we completely 
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determined the mixed graphs in Mn(−
√

3) when their underlying graphs belong to 
∪1≤i≤3Gi. As a result, all connected mixed graphs on n ≥ 11 vertices with smallest 
eigenvalues greater than −

√
3 are obtained.

In fact, all mixed graphs in Mn(−
√

3) with underlying graphs belong to G0 can be 
easily obtained with the help of computer. For example, there are about 68 mixed graphs 
in M6(−

√
3) with the underlying graph being 2K1∇(K1 ∪K3), and there are about 198

mixed graphs in M8(−
√

3) with the underlying graph being 2K1∇(K1∪K4). Therefore, 
we do not list them in the paper. Loosely speaking, we theoretically determine all mixed 
graphs with smallest eigenvalue greater than −

√
3.
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