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1. Introduction

The number of spanning trees is an important quantity in the graph theory, networks, 
statistical mechanics and physical system. Historically, concerning the enumeration of 
spanning trees in the electrical networks, Kirchhoff [7] in 1847 discovered the celebrated 
Matrix-Tree Theorem (MTT), which gave the number of spanning trees based on the 
determinant of a submatrix of the Laplacian or, equivalently, as the product of the 
non-zero eigenvalues of the Laplacian.

Nowadays, Kirchhoff’s Matrix-Tree Theorem has been extended to the digraphs [1,10,
3,11]. In terms of [3], the earliest proof of this extension gave the credit to [1], although 
the result is usually ascribed to Tutte [11] and thereby known as Tutte’s Theorem. Very 
recently, De Leenheer [8] not only presented an elementary proof of Tutte’s Theorem but 
also generalized it to the weighted digraphs. On the other hand, Monfared and Mallik 
[6] provided an analog of Kirchhoff’s Matrix-Tree Theorem for signless Laplacians. See 
[4,5,9,12] for more new recent results about this topic. The aim of this paper is to expound 
Tutte’s Theorem in terms of the signless Laplacians.

About the methods to show Tutte’s MTT, most proofs adopt the Leibniz formula 
for the determinant of a matrix which can be expressed as a sum over permutations 
of the matrix elements to the reduced Laplacian matrix. Some proofs [10,3] rely on 
counting schemes that apply the inclusion-exclusion principle to collections of special 
subgraphs of the initial digraph. Another goal of this paper is to offer an elementary 
proof of Tutte’s MTT for the signless Laplacians. The methods used here are to factor 
the signless Laplacian matrix as a product of two rectangular matrices and then use 
Cauchy-Binet Theorem (see Lemma 3.1). Note that both factors in this product are 
closely connected with the so-called incidence matrices associated with the digraphs. 
Moreover, the basic proof here will be helpful for us to clarify the intrinsic relations among 
the various matrices of digraphs, and to catch the relations between the orientations and 
the topological structures of graphs.

For the sake of convenience, we introduce some notations and terminology from the 
spectral graph theory. Let G = (V (G), E(G)) be an undirected simple graph with vertex 
set V (G) = {v1, v2, . . . , vn} and edge set {e1, e2, . . . , em}. The well-known adjacency 
matrix, denoted by A(G) = (aij)n×n, is the (0, 1)-symmetric matrix with aij = 1 if 
vivj ∈ E(G) and aij = 0 otherwise. For v ∈ V (G), d(v) denotes the degree of a vertex v
and then D(G) = diag(d(v1), d(v2), . . . , d(vn)) is the degree matrix of G. The Laplacian
and the signless Laplacian matrices are respectively defined as L(G) = D(G) −A(G) and 
Q(G) = D(G) + A(G). Let Li (or Qi) be the reduced (signless) Laplacian by removing 
the i-th row and the i-th column indexed by the vertex vi. A graph H is a subgraph of 
G if V (H) ⊆ V (G) and E(H) ⊆ E(G); H is a spanning subgraph of G if V (H) = V (G). 
A spanning tree of G is a connected subgraph of G on all n vertices with n − 1 edges. 
The number of distinct spanning trees of G is denoted by τ(G) which is given by the 
well-known Kirchhoff’s Matrix-Tree Theorem.
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Fig. 1. An example of a digraph Γ.

Theorem 1.1 (Kirchhoff’s Matrix-Tree Theorem). Let G be a connected graph with n
vertices and μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 be the eigenvalues of its Laplacian L(G). 
Then

τ(G) = det(Li) = 1
n

n−1∏
i=1

μi, (1)

for all i = 1, 2, . . . , n.

We next review Tutte’s Matrix-Tree Theorem which concerns the digraphs. Let Γ =
(V (Γ), E(Γ)) be a simple digraph (short for directed graphs) with vertex set V (Γ) =
{v1, . . . , vp} and arc set E(Γ) = {�e1, �e2, . . . , �eq} such that an ordered pair of distinct 
vertices of Γ is linked by only one arc of Γ. More precisely, we assume that each arc 
points from some vertex vi to another vertex vj �= vi, and that there exists at most one 
arc from any vertex to any distinct vertex (see an example of a digraph in Fig. 1).

For two vertices u and v, if there is an arc �e from u to v, then we write u → v, where 
u and v are respectively the tail and the head of �e. We write u ∼ v if either u → v or 
v → u. For a vertex v and an arc �e, denote by v → �e if v is the tail of �e and �e → v if 
v is the head of �e. We write v ∼ �e if either v → �e or �e → v. The in-degree d+(v) and 
out-degree d−(v) of v are defined as d+(v) = |{�e | �e → v}| and d−(v) = |{�e | v → �e}|, 
respectively.

A directed cycle of a digraph Γ is a collection of distinct vertices {vi1 , vi2 , . . . , vin}
and a collection of distinct arcs {�ek1 , �ek2 , . . . , �ekn

} such that each �eki
points from vii

to vii+1 , and where vin+1 = vi1 . The girth of Γ is the length of the shortest cycle in 
Γ; if Γ has no cycles we define the girth of Γ to be infinite. A connected digraph Γ is 
called an odd-unicyclic digraph if |V (Γ)| = |E(Γ)| and its girth is odd; otherwise, Γ is an 
even-unicyclic digraph.

Example 1. Consider the digraph in Fig. 1, which we shall use as a running example 
throughout this paper to illustrate the various concepts and notions. This digraph has p =
8 vertices and q = 9 arcs. For example, the in-degrees of v1, v2, v3 are respectively 0, 1, 2
and the out-degrees of v4, v5, v7 are severally 2, 1, 1. Moreover, there are two directed 
cycles, i.e., {v3, v4, v5} and {�e3, �e4, �e5}; {v6, v7, v8} and {�e7, �e8, �e9}.

Recall, a directed subgraph of Γ is a digraph Γ′ = (V ′(Γ′), E′(Γ′)) with V ′(Γ′) ⊆ V (Γ)
and E′(Γ′) ⊆ E(Γ).
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Fig. 2. Two directed spanning trees of Γ.

Definition 1.1 ([8]). Let Γ = (V (Γ), E(Γ)) be a digraph with a fixed vertex vr ∈ V (Γ). 
Then a directed subgraph Γ′ is said to be an outgoing (incoming) directed spanning tree 
rooted at vr (see Fig. 2) if V ′ = V and if the next three conditions are satisfied:

(1) Each vertex vi �= vr in V ′ has in-degree (out-degree) 1.
(2) The root vertex vr is of in-degree (out-degree) 0.
(3) Γ′ contains no directed cycles.

For a digraph Γ with p vertices, we define the following two Laplacians of Γ to be real 
matrices of order p:

L1 = Din −A and L2 = Dout −AT ,

where Din = diag(d+(v1), d+(v2), . . . , d+(vp)) and Dout = diag(d−(v1), d−(v2), . . . ,
d−(vp)) are diagonal matrices and A is the adjacency matrix of Γ, a real p × p ma-
trix defined entrywise as follows:

[A]ij =
{

1 if vi → vj ;
0 otherwise.

For a fixed vertex vr in Γ, we define the reduced Laplacians Lr
1 and Lr

2 by removing 
the r-th row and r-th column from L1 and L2, respectively. We are now ready to state 
the Tutte’s Matrix-Tree Theorem.

Theorem 1.2 (Tutte’s Matrix-Tree Theorem). Let Γ be a connected digraph. Then

τout(Γr) = det(Lr
1) and τin(Γr) = det(Lr

2),

where τout(Γr) and τin(Γr) are the numbers of outgoing and incoming directed spanning 
trees rooted at vr, respectively.
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Similarly, we define the signless Laplacians of Γ as follows:

Q1 = Din +A and Q2 = Dout +AT .

For a given vertex vr in Γ, we define the reduced signless Laplacians Qr
1 and Qr

2 by 
removing the r-th row and r-th column from Q1 and Q2, respectively.

Example 2. For the digraph Γ in Fig. 1, picking the root vr = v1 we have that

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 0 1 1 1 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Q1
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0
0 2 1 0 0 0 0
0 0 1 1 1 0 0
0 1 0 1 0 0 0
0 0 0 0 2 1 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A directed TU-subgraph of Γ is a spanning subgraph whose components are directed 
trees or odd-unicyclic digraphs. For a directed TU-subgraph Ω of Γ, the number of 
connected components that are odd-unicyclic digraphs is denoted by α(Ω) (see Example 
3). Let Ω1 (or Ω2) be a directed TU-subgraph rooted at vr of Γ with the in-degree (or 
out-degree) of vr being 0 and the others being 1’s. Remark, from Lemma 2.2, that Ωi has 
only one connected component that is a directed tree and α(Ωi) connected components 
that are odd-unicyclic digraphs (i = 1, 2).

Example 3. Let v1 be the root of digraph Γ in Fig. 1. Then the directed TU-subgraphs 
Ω1 of Γ are shown in Fig. 3:

Fig. 3. The directed TU-subgraphs Ω1 of Γ.

We are now ready to introduce the main result of this paper.

Theorem 1.3 (Tutte’s MTT for signless Laplacians). Let Γ = (V (Γ), E(Γ)) be a connected 
digraph with order p and size q. Then
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Fig. 4. The directed TU-subgraphs Ω2 of Γ.

det(Qr
1) =

∑
Ω1⊆Γ

2α(Ω1), and det(Qr
2) =

∑
Ω2⊆Γ

2α(Ω2),

where the summation runs over all directed TU -subgraphs Ωi of Γ (i = 1, 2).

Example 4. For the digraph Γ in Fig. 1, by Example 2 we have directly computed 
det(Q1

1) = 9. On the other hand, we calculate it in terms of the first formula in Theo-
rem 1.3 again. For the root v1, by the directed TU-subgraphs Ω1 of Γ in Fig. 3 we get 
that

det(Q1
1) =

∑
Ω1⊆Γ

2α(Ω1) = 20 + 21 + 21 + 22 = 9.

We next adopt the second formula in Theorem 1.3 as another instance. Pick the vertex 
v8 as the root in the digraph Γ. Then

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 2 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Q8
2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 1 2 0 0 0
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Clearly, all the directed TU-subgraphs Ω2 of Γ are described in Fig. 4. Thereby, det(Q8
2) =∑

Ω2⊆Γ
2α(Ω2) = 20 + 21 = 3.

Let τout(Γr) and τin(Γr) be defined in Theorem 1.2. Set τout(Γ) =
∑n

i=1 τout(Γr), the 
number of all the outgoing spanning trees in Γ. Note that the following result can be 
similarly proved for τin(Γr).

Corollary 1.4. Let λ1, · · · , λn be the eigenvalues of the signless Laplacian Q1 of a digraph 
Γ. Then
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det(Qr
1) ≥ τout(Γr) and

∑
1≤i1<···<in−1≤n

n−1∏
j=1

λij =
n∑

r=1
det(Qr

1) ≥ τout(Γ) (2)

where the equality holds if and only if one of the followings holds

(i) det(Qr
1(Γ)) = 0;

(ii) det(Qr
1(Γ)) > 0 and each directed odd cycle contains the vertex vr.

The remainder of the paper is organized as follows: In Section 2 we discuss the various 
relations among the matrices of digraphs. In Section 3, we give an elementary proof of 
Tutte’s MTT for signless Laplacians. Moreover, we determine a necessary and sufficient 
condition for det(Qr

1(Γ)) = τout(Γr), and provide an example to enumerate the spanning 
trees in the Heawood digraph. In Section 4, we generalize our main results to the weighted 
digraphs.

2. Relations among the matrices of digraphs

In this section, we investigate the various relations among the matrices of digraphs, 
including the in-degree matrix, the out-degree matrix, the in-incidence matrix, the out-
incidence matrix, the incidence matrix, the (reduced) signless Laplacian and so on.

Definition 2.1. Let Γ = (V (Γ), E(Γ)) be a digraph. Then

(i) The in-incidence matrix Nin(Γ) is the matrix whose rows are indexed by E(Γ) and 
columns are indexed by V (Γ) with (�e, v)-th entry being 1 if �e → v and 0 otherwise.

(ii) The out-incidence matrix Mout(Γ) is the matrix whose rows are indexed by V (Γ)
and columns are index by E(Γ) with (v, �e)-th entry being 1 if v → �e and 0 otherwise.

(iii) The incidence matrix N(Γ) is the matrix whose rows are indexed by V (Γ) and 
columns are indexed by E(Γ) with (v, �e)-th entry being 1 if v ∼ �e and 0 otherwise.

Example 5. For the digraph from Fig. 1,

Nin =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Mout =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The above two incidence matrices record which arcs point to, respectively, from each 
vertex. But on the other hand, both matrices also provide us with global information 
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about the digraph. Indeed, given these two matrices, we can unambiguously construct 
the digraph. This suggests that perhaps the two signless Laplacians of a digraph can be 
expressed in terms of just the two incidence matrices. The following factorization result 
shows that this is indeed the case.

Lemma 2.1 ([8]). Let Γ be a digraph. Then

Din = NT
inNin, A = MoutNin, and Dout = MoutM

T
out.

For the (reduced) signless Laplacians, from the above lemma we get the following 
equalities:

Q1 = (NT
in + Mout)Nin and Q2 =

(
Mout + NT

in

)
MT

out.

Since NT
in + Mout = N , then

Q1 = N ·Nin and Q2 = N ·MT
out. (3)

For a fixed vertex vr in V , let Nr
in be the matrix obtained from Nin by removing the 

rth column in Nin, and let Mr
out be the matrix obtained from Mout be removing the rth 

row from Mout. Since (Nr
in)T + Mr

out = Nr, then

Qr
1 = NrNr

in and Qr
2 = Nr (Mr

out)
T
. (4)

Lemma 2.2. Let Γ be a connected digraph. If there exists u such that d+(u) = 0 and 
d+(v) = 1 for any v �= u, then Γ is a tree; if d+(v) = 1 for any v ∈ V (Γ), then Γ is a 
unicyclic graph.

Proof. We first show the first part. Suppose to the contrary that Γ contains a cycle C
with length s. Since 

∑
v∈C d+

C(v) = s, we have u /∈ C and C = v1 → v2 → · · · → vs → v1. 
Since Γ is connected, there is a shortest path from u to C, say u ∼ u1 ∼ u2 ∼ · · · ∼ uk is 
such a path where uk ∈ C and ui /∈ C for 1 ≤ i ≤ k− 1. Since d+(u) = 0 and d+(ui) = 1
for 1 ≤ i ≤ k, we have ui → ui+1 for 0 ≤ i ≤ k− 1 where u0 = u. It leads to d+(uk) ≥ 2, 
a contradiction.

Now we prove the second part. For a vertex v, denote by v1 → v2 → · · · → vt = v

the longest directed path pointing to v. Since d+(v1) = 1, there is a vertex w satisfying 
w → v1. It is clear that w = vi for some 1 ≤ i ≤ t since otherwise w → v1 → v2 → · · · → v

would be a longer path pointing to v, which is impossible. Thus, Γ is not a tree and wv1
is not a cut edge. Let Γ′ be the digraph obtained from Γ by deleting the arc wv1. It is 
clear that Γ′ is still connected, d+

Γ′(v1) = 0 and d+
Γ′(v) = 1 for any v �= v1. Therefore, the 

first part of the statement indicates that Γ′ is a tree, and thus Γ is unicyclic. �
Lemma 2.3. Let Γ be a connected digraph satisfying d+(v) = 1 for any v. Then Γ is 
unicyclic and
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detN(Γ) detNin(Γ) =
{

0, if Γ is even-unicyclic,
2, if Γ is odd-unicyclic.

Proof. From Lemma 2.2, Γ is unicyclic. Label the vertices as v1, v2, . . . , vn and the arcs as 
�e1, �e2, . . . , �en such that �ei is the arc pointing to vi for 1 ≤ i ≤ n. Therefore, Nin(Γ) = In. 
Furthermore, if vi is a pendent vertex, then the determinant of N(Γ) do not change after 
deleting the vertex vi and the arc �ei. It means that detN(Γ) = detN(C), where C is 
the cycle in Γ. Note that N(C) is a circulant matrix whose first row contains two 1’s. 
Then we have detN(C) = 0 if |C| is even and 2 otherwise. So, the result follows. �
3. An elementary proof of Tutte’s MTT for signless Laplacians

We are now fully prepared to give an elementary proof of Theorem 1.3, some ideas of 
which are inspired by [8]. The following is the well-known Cauchy-Binet Theorem.

Proposition 3.1 (Cauchy-Binet Theorem [2]). Let X and Y be m × n matrices. Then

det(XY �) =
∑
J

det(X(J)) det(Y (J)),

where the sum runs over the subset J of the set of columns, and X(J) (resp. Y (J)) 
denotes the square submatrix of the order m of X (resp. Y ) with columns indexed by J

Proof of Theorem 1.3. A proof for the reduced signless Laplacian Qr
1 is given here; while 

the proof for the reduced Signless Laplacian Qr
2 is omitted, due to the similarity. From 

(4) it follows that

det(Qr
1) = det(Nr ·Nr

in).

For convenience we let

X = Nr and Y = Nr
in.

Employing Cauchy-Binet Theorem we arrive at

det(Qr
1) =

∑
J⊆{1,...,q}
|J|=p−1

det(X[J ]) det(Y [J ]),

where the sum runs over all the subsets J of {1, . . . , q} which contain p − 1 elements. 

Clearly, there exists 
(

q

p− 1

)
such subsets. Moreover, let X[J ] denote the (p −1) ×(p −1)

submatrix obtained from the (p − 1) × q matrix X by choosing exactly those columns of 
X in the set J . Analogously Y [J ] is the (p − 1) × (p − 1) submatrix which is obtained 
from the q × (p − 1) matrix Y by choosing accurately those rows of Y in J .
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To complete the conclusion, we will prove the following three claims.

Claim 1. If the p − 1 elements in the set J are consistent with the indices of the arcs of 
an outgoing directed spanning tree rooted at vr, then det(X[J ]) det(Y [J ]) = 1.

Proof of Claim 1. Let J = {l1, l2, . . . , lp−1} (l1 < l2 < · · · < lp−1) be in a bijective 
correspondence to a set of p −1 indices of the arcs �el1 , �el2 , . . . , �elp−1 of an outgoing directed 
spanning tree rooted at vr. Analogously, set J̃ = {t1, t2, . . . , tp−1} (t1 < t2 < · · · < tp−1) 
to be in a bijective which is relevant with the set of indices of the vertices in the set 
V \ {vr}. We denote by T = (V,E′) the directed subgraph of Γ which is related to this 
tree, that is, E′ = {�el1 , �el2 , . . . , �elp−1}.

It is clear that for an outgoing directed spanning tree rooted at vr, the in-degree of 
every vertex other than vr is 1, which indicates that each column of Y [J ] = Nr

in[J ] has 
only one nonzero entry equal to 1. Moreover, any one of the p − 1 arcs points to one 
of the p − 1 non-root vertices, which shows that each row of Y [J ] = Nr

in[J ] has merely 
one nonzero entry which is 1. Consequently, the (p − 1) × (p − 1) matrix Y [J ] = Nr

in[J ]
contains exactly one nonzero entry in each row and in each column, which is equal to 1.

Thereby, the matrix Y [J ] = Nr
in[J ] is a permutation matrix implying Y [J ](Y [J ])T =

(Y [J ])TY [J ] = I, which leads to

det(X[J ]) det(Y [J ]) = det(X[J ]X[J ])

= det(I + Mr
out[J ]Nr

in[J ])

= det(I + D)

(5)

where

D = Mr
out[J ]Nr

in[J ].

Since D is nilpotent [8, the second claim in pp. 722], and then there exists an invertible 
(p − 1) × (p − 1) matrix R satisfying R−1DR = J , where the Jordan canonical form J
of D is strictly upper-triangular. Along with (5) we get

det(X[J ]) det(Y [J ]) = det(I + D) = det(R(I +J)R−1) = det(I +J) = 1.

Claim 2. If the p − 1 elements in the set J are corresponding to the indices of the arcs 
of Ω1 rooted at vr, then det(X[J ]) det(Y [J ]) = 2α(Ω1).

Proof of Claim 2. Suppose that J = {l1, . . . , lp0}∪ {lp0+1, . . . , lp1}∪ · · · ∪
{
lpα(Ω1)+1, . . . ,

lp−1
}

(l1 < l2 < · · · < lp−1) is in a bijective which is correlative with a set of 
p − 1 indices of the arcs E0 ∪ E1 ∪ · · · ∪ Eα(Ω1), where E0 = {�el1 , . . . , �elp0

}, E1 =
{�elp0+1 , . . . , �elp1

}, · · · , Eα(Ω1) = {�elpα(Ω1)+1 , . . . , �elp−1}. Recall that all except one con-
nected components of Ω1 are directed odd-unicyclic graphs and the other one is a directed 
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tree. Then we can set Γ[E0] to be a directed tree, Γ[Ei] (1 ≤ i ≤ α(Ω1)) is a directed 
odd-unicyclic graph. Hence,

det(X[J ](Γ)) = det

⎡
⎢⎢⎣
Nr(Γ[E0])

N(Γ[E1])
. . .

N(Γ[Eα])

⎤
⎥⎥⎦

and

det(Y [J ](Γ)) = det

⎡
⎢⎢⎣
Nr

in(Γ[E0])
Nin(Γ[E1])

. . .
Nin(Γ[Eα])

⎤
⎥⎥⎦ .

So, by Lemma 2.3 and Claim 1 we get

det(X[J ]) det(Y [J ]) = det((NrNr
in)(Γ[E0]))

α∏
i=1

det(N(Γ(Ei)) det(Nin(Γ(Ei))

= 2α(Ω1).

Claim 3. If the p − 1 elements in the set J are associated to the indices of the arcs of a 
directed subgraph of Γ which is not the TU-subgraph Ω1 or an outgoing directed spanning 
tree rooted at vr, then det(X[J ]) det(Y [J ]) = 0.

Proof of Claim 3. In this case, set J = {l1, . . . , lp−1} (l1 < · · · < lp−1) to correspond to 
the index set of a subgraph Γ′ = (V,E′) of Γ with E′ = {�el1 , . . . , �elp−1}, which is neither 
Ω1 nor an outgoing directed spanning tree rooted at vr. We next prove that

det(X[J ]) det(Y [J ]) = 0.

By Definition 1.1 we consider three possible cases.

Case 1. There exists a vertex vi in Γ′ with vi �= vr, with in-degree not bing 1. Thus, 
d+(vi) = 0 or d+(vi) ≥ 2. For the former case, the column of Nr

in[J ] that represents all 
in-coming arcs to vi in Γ′ is a zero column vector, and so det(X[J ]) = det(Nr

in[J ]) = 0. 
For the latter case, we have at least two identical rows in the matrix Nr

in[J ], and similarly 
det(Y [J ]) = det(Nr

in[J ]) = 0.

Case 2. The in-degree of the root vr is not 0. Hence Nr
in[J ] contains at least one zero 

row, and thereby det(Y [J ]) = det (Nr
in[J ]) = 0.

Case 3. Γ′ contains a directed cycle. By Cases 1 and 2 we can set d+(vr) = 0 and 
d+(v) = 1 for any v �= vr. Therefore, each component of Γ′ not containing vr is a unicyclic 
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graph, and the component containing vr is a tree by Lemma 2.2. Since Γ′ � Ω1, then by 
V (Γ′) = |E′| + 1 we get that Γ′ contains an even-unicyclic graph. From Lemma 2.3 it 
follows that det(X[J ]) = 0. �

Let λ1, λ2, · · · , λn be the eigenvalues of matrix Mn×n. The k-th symmetric function
sk of λ1, λ2, · · · , λn is defined to be the sum of the product of the eigenvalues taken k at 
a time. In other words,

sk =
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

In [13, pp. 494], the following statement has been introduced.

Lemma 3.2. sk =
∑

Mk×k, where 
∑

Mk×k is the sum of all k × k principal minors of 
Mn×n.

We are now prepared to prove Corollary 1.4.

Proof of Corollary 1.4. Setting k = n − 1 in Lemma 3.2, we get the first equality of the 
latter statement in (2). So, the remaining work is to show the equality of the former 
inequality in (2).

Firstly, we show the sufficiency. There is nothing to prove if (i) holds, and thereby we 
assume det(Qr

1(Γ)) > 0. For any Ω1 ⊆ Γ, since each odd directed cycle contains vr and 
the component of Ω1 containing vr is a tree, Ω1 is a spanning tree rooted at vr, and thus 
det(Qr

1(Γ)) = τout(Γr) by Theorem 1.3.
Conversely, if det(Qr

1(Γ)) = τout(Γr), then either Γ contains no TU-subgraph Ω1 or 
each Ω1 is a spanning tree rooted on vr. For the former case, we have det(Qr

1(Γ)) = 0
and (i) follows. Otherwise, assume that Ω1 ∈ Γ. If there is a directed odd cycle C not 
containing vr, then there is a path v1 → v2 → · · · → vs in Ω1 such that C = v1 → v2 →
· · · → vs → v1. Suppose that �e is the arc in Ω1 such that �e → v1. Let Ω′

1 = Ω1 −�e+ vsv1
be the graph obtained from Ω1 by deleting �e and adding vsv1. It is clear Ω′

1 ∈ Γ is not 
a spanning tree, a contradiction. �

Algorithm 1 Induce S(X) from X.
Require: X ⊆ Γ
Ensure: Obtain S(X)

S(X) ← X
if ∃v /∈ X and u ∈ X such that u → v then

S(X) ← X + v + uv
end if

Though Corollary 1.4 gives a sufficient and necessary condition for detQr
1(Γ) =

τout(Γr), the condition (i) is not clear enough. Next we present an arithmetic to de-
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Fig. 5. The Heawood digraph.

termine whether detQr
1(Γ) = 0. For a subgraph X of Γ, we call S(X) obtained by 

Algorithm 1 a out-stretched subgraph.
Then we get the reminder-graph R(Γ, vr) from Γ and a vertex vr by Algorithm 2.

Algorithm 2 Induce R(Γ, vr) from Γ and vr.
Require: Digraph Γ and vertex vr

Ensure: Obtain R(Γ, vr)
R(Γ, r) ← Γ − S({vr})
if R(Γ, vr) contains an odd directed cycle C then

R(Γ, vr) ← R(Γ, vr) − S(C)
end if

Clearly, det(Qr
1(Γ)) �= 0 if and only if Γ has an outgoing spanning tree rooted at vr, or 

Γ contains a directed TU-subgraph Ω1 rooted at vr. For the former case, by Algorithm 1
we get that R(Γ, vr) is null; for the latter case, by Algorithms 1 and 2 we also get R(Γ, vr)
to be null. Thus, the following corollary follows.

Corollary 3.3. det(Qr
1(Γ)) = 0 if and only if R(Γ, r) is not null.

Let the characteristic polynomial of matrix Mn×n be fM (λ) = anλ
n + an−1λ

n−1 +
an−2λ

n−2 + · · · + a1λ + a0. Then by the well-known Vieta’s Theorem we get the k-th 
symmetric function sk to be

sk = (−1)k an−k

an
. (6)

Example 6. In the end of this section, we use Corollary 1.4 to enumerate all spanning 
trees in the Heawood digraphs in Fig. 5. Clearly, the signless Laplacian Q1 of Heawood 
digraph is shown as follows:
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Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 1 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 2 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 3 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 2 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A direct calculation shows that the characteristic polynomial of Q1 is

fQ1(λ) = λ14 − 21λ13 + 202λ12 − 1180λ11 + 4678λ10 − 13318λ9 + 28084λ8 − 44547λ7

+ 53327λ6 − 47743λ5 + 31173λ4 − 14098λ3 + 3967λ2 − 525λ,

with the coefficients a14 = 1 and a1 = −525 as well as the eigenvalues

3, 2.9253, 1.3269, 1, 1, 0, 2.1665±0.8049i, 2.0707±0.7687i, 0.9293±0.7587i, 0.7073±0.8398i.

In terms of Corollary 1.4(ii) and (6), we get

τout(Γ) = Σr
i=1τout(Γr) =

∑
1≤i1<···<i13≤14

13∏
j=1

λij = s13 = (−1)13 a1

a14
= 525.

4. Extension to weighted digraphs

Let Γw = (V, E, W ) be a weighted digraph, where V = {v1, · · · , vp} is the vertex 
set, E = {�e1, · · · , �eq} the arc set, and W = {w1, · · · , wq} is the set positive weights 
associated to each of arcs, i.e., wi = w(�ei). For a subgraph Γ′

w of Γw, we denote by 
w(Γ′

w) =
∏

�e∈E(Γ′
w)

w(�e) the weight of Γ′
w.

For a vertex v ∈ V , the weighted in-degree d+
w(v) and the weighted out-degree d−w(v)

are defined as d+
w(v) =

∑
e→v

w(�e) and d−w(v) =
∑
v→�e

w(�e), respectively. The in-degree (or 

out-degree) matrix Din (or Dout) is the diagonal matrix indexed by V (Γw) whose v-th 
diagonal entry is d+

w(v) (or d−w(v)). The adjacency matrix A is the square matrix indexed 
by V (Γw) whose (u, v)-th entry is w(uv) if u → v and 0 otherwise.

The in-incidence matrix Nin is the matrix whose rows are indexed by E(Γw) and 
columns are indexed by V (Γw) with (�e, v)-th entry being 

√
w(�e) if �e → v and 0 otherwise. 

The out-incidence matrix Mout is the matrix whose rows are indexed by V (Γw) and 
columns are indexed by E(Γw) with (v, �e)-th entry being 

√
w(�e) if v → �e and 0 otherwise. 
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The incidence matrix N is the matrix whose rows are indexed by V (Γw) and columns 
are indexed by E(Γw) with (v, �e)-th entry being 

√
w(�e) if v ∼ �e and 0 otherwise. Then 

signless Laplacians of Γw are defined to be

Q1 = Din + A and Q2 = Dout + A T .

Lemma 4.1. Q1 = N Nin and Q2 = N Mout.

Proof. By immediate calculations, the (u, v)-th entry of N Nin is

(N Nin)uv =
∑
�e

(N )u�e(Nin)�ev =
∑
u∼�e

(N )u�e(Nin)�ev =
∑
u∼�e
�e→v

w(�e).

Then, (N Nin)uv = d+
w(u) if u = v, (N Nin)uv = w(uw) if u → v and (N Nin)uv = 0

otherwise. Therefore we are done. �
Naturally, we can extend the definitions of TU-subgraphs Ω, Ω1 and Ω2 to the weighted 

TU-subgraphs Ωw, Ωw
1 and Ωw

2 . Denote by α(Ωw) the number of unicyclic graphs in Ωw.
Let Qr

1 (or Qr
2) be the matrix obtained by deleting the r-th row and the r-th column 

of Q1 (or Q2). By N r we denote the matrix obtained from N by deleting the r-th row. 
Set N r

in to be the matrix obtained from Nin by deleting the r-th column, and M r
out to 

be the matrix obtained from Mout by deleting the r-th row.

Theorem 4.2. Let Γw be a weighted digraph. Then

det(Qr
1) =

∑
Ωw

1 ⊆Γw

2α(Ωw
1 )w(Ωw

1 ) and det(Qr
2) =

∑
Ωw

2 ⊆Γw

2α(Ωw
2 )w(Ωw

2 ),

where the summation runs over all the TU -graphs Ωw
i of Γw (i = 1, 2).

Proof. We here only provide a proof for Qr
1, since the proof for Qr

2 is analogous. By 
Lemmas 4.1 and 3.1, we have

det(Qr
1) =

∑
S

det(N r[J ]) det(N r
in[J ]),

where S ⊆ E(Γw) with |J | = |V (Γw)| − 1, N r[J ] and N r
in[J ] are the square submatrices 

of N and Nin by deleting the rows not in S. Denote by Γ′
w the subgraph with V (Γ′

w) =
V (Γw) and E(Γ′

w) = J .
By the definition of Nin, if there exists v ∈ V \{vr} such that d+

w(v) = 0, then the 
v-th column of N r

in is 0. If there exists v ∈ V \{vr} such that d+
w(v) ≥ 2, say �e1, �e2 → v, 

then the �e1-th row and the �e2-th row are linear dependent. If d+
w(r) ≥ 1, say �e → vr, 

then the �e-th row is 0. Thus, det(N r
in) �= 0 implies d+

w(r) = 0 and d+
w(v) = 1 for any 

v �= vr. Therefore, each component of Γ′
w not containing vr is a unicyclic graph, and the 
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component containing vr is a tree due to Lemma 2.2. Note that, for any v ∈ V \{vr}
with �e → v, we have det(N r

in) = det(M)
√

w(�e), where M is obtained from N r
in by 

deleting the v-th row and �e-th column. Therefore, by repeating the deletions, we have 
det(N r

in) =
√

w(Ωw
1 ).

By the definition of N , if there is a pendent vertex v such that v ∼ �e, then detN =√
w(�e) det N ′ where N ′ is obtained from N by deleting its v-th row and �e-th column. Let 

Γ′
w = Γ′

w,1 ∪ Γ′
w,2∪ · · · ∪ Γ′

w,s. Denote by N r[Γ′
w,i] the square submatrix corresponding 

to Γ′
w,i. Clearly, detN r =

∏
i detN r[Γ′

w,i]. Denote by Ci the directed cycle (if exists) in 
Γ′
w,i. Then we have detN r[Ci] = 2

√
w(Ci) if Ci is an odd and 0 otherwise. Therefore, 

we obtain detN r[Γ′
w,i] = w

(
E
(
Γ′
w,i

)
\ E (Ci)) det N r[Ci] = 2w(Γ′

w,i) if Ci is odd and 

0 otherwise. Consequently, det(N r) = 2α(Γ′
w,i)

√
w(Γ′

w,i) if Γ′
w,i ∈ Ωw

1 and 0 otherwise.
This completes the proof. �
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