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On T4-gain graphs with few positive eigenvalues
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ABSTRACT
Let T4 = {1,−1, i,−i} be the group of fourth roots of unit. A T4-gain
graph is a graph where each orientation of an edge is given a com-
plex unit in T4, which is the inverse of the complex unit assigned
to the opposite orientation. In this paper, we characterize the struc-
ture of the T4-gain graphs with exactly one positive eigenvalue and
determine the T4-gain graphs with cut vertices having exactly two
positive eigenvalues. Our results extend some parallel ones about
mixed graphs and signed graphs.
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1. Introduction

LetG be a simple graph with vertex setV(G) and edge set E(G), and letT4 = {1,−1, i,−i}
be the group of fourth roots of unit. For any number z ∈ C, denote by z∗ the conjugate
of z, and Re(z) and Im(z) the real part and the imaginary part of z, respectively. The T4-
gain graph � = (G,T4,ϕ) is a graph with additional structure ϕ: �E(G) → T4 such that
ϕ(uv) = ϕ(vu)−1 for any {u, v} ∈ E(G), where �E(G) = {uv, vu | {u, v} ∈ E(G)} is the set of
oriented edges. The graph G is the underlying graph of � and the function ϕ is the gain
function of�. Each simple graph can be seen as aT4-gain graphwhere the gain of each edge
(if there exists any) is 1. The adjacencymatrix of� is an n × nmatrixA(�) = [aij] defined
by aij = ϕ(vivj) if {vi, vj} ∈ E(G) and 0 otherwise. Clearly, A(�) is a Hermitian matrix.
Thus, the eigenvalues of A(�) are real. The eigenvalues of A(�) are called the eigenvalues
of�. The multiset of all eigenvalues together with their multiplicities is the spectrum of�,
denoted by Sp(�), that is Sp(�) = {λ[m1]

1 , λ[m2]
2 , . . . , λ[mk]

k }, where λ1, λ2, . . . , λk are all the
distinct eigenvalues andmj is themultiplicity of the eigenvalue λj (1 ≤ j ≤ k). The number
of positive, negative and zero eigenvalues of� are defined as positive inertia index, negative
inertia index and nullity of �, denoted by p(�), n(�) and η(�), respectively. The rank
rank(�) of� is the number of non-zero eigenvalues of�, i.e. p(�)+ n(�) = rank(�).

For u ∈ V(G), we denote its neighbourhood and its degree byNG(u) and dG(u), respec-
tively. A pendant vertex is the vertex of degree 1 and a cut vertex of G is a vertex whose
removal increases the number of connected components of G. Let � = (G,T4,ϕ) be
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a T4-gain graph. If v is a cut vertex of G, we also say v is a cut vertex of �. For an
induced subgraphH of G, the corresponding induced T4-gain graph, denoted by�[H], is
defined as�[H] = (H,T4,ϕ′) satisfying ϕ′(uv) = ϕ(uv) for every uv ∈ �E(H). If V(H) =
{v1, v2, . . . , vm}, then we also write �[v1, v2, . . . , vm] for �[H]. It is clear that the adja-
cency matrix A(�[H]) is just the principal submatrix of A(�) induced by the vertex set of
V(H). Let v ∈ V(G), we write�− v for the induced subgraph obtained from� by delet-
ing the vertex v and all edges incident with v. For an induced subgraph �[H] of � and a
vertex v ∈ V(G)\V(H), denote by �[H] + v, the induced subgraph of � with vertex set
V(H) ∪ {v}. Throughout this paper, we always writeKn,Kn1,n2,...,nk and Pn for the complete
graph, the complete multipartite graph and the path respectively. Denote by In the identity
matrix of order n. Let Jn×m and 0n×m be respectively the all-one and the all-zero n × m
matrices. Let 1n = Jn×1 and 0n = 0n×1. If the size of these matrices are clear from the
context, we often delete the subscripts.

The converse �	 = (G,T4,ϕ	) of a T4-gain graph � = (G,T4,ϕ) is the T4-gain
graph with ϕ	(uv) = ϕ(uv)−1 for any {u, v} ∈ E(G). Clearly, A(�	) = A(�)	, and thus
� and �	 are cospectral. Two T4-gain graphs � = (G,T4,ϕ) and �′ = (G,T4,ϕ′)
are switching equivalent if there is a map θ : V(G) → T4 such that either ϕ′(uv) =
θ(u)−1ϕ(uv)θ(v) for all {u, v} ∈ E(G) or ϕ′(uv) = θ(u)−1ϕ	(uv)θ(v) for all {u, v} ∈ E(G).
In this case, themap θ is called a switching equivalent transformation from� to�′. LetD =
diag(θ(v1), θ(v2), . . . , θ(vn)). Then either A(�′) = D−1A(�)D or A(�′) = D−1A(�	)D
and thus� and�′ share the same spectrum. It is clear that the switching equivalence is an
equivalence relation, and let [�] denote the equivalence class containing�.

Note that amixed graph G̃ (resp. signed graph �(G)) is a T4-gain graph in which only 1
and±i (resp.±1) gains are used. Hence,T4-gain graphs can be seen as the generalizations
ofmixed graphs and signed graphs. Formore advances onmixed graphs and signed graphs,
we refer the reader to [1–8], for examples.

The study of graphs with few eigenvalues has attracted much attention. With respect
to simple graphs, Smith [9] characterized all simple graphs with exactly one positive
eigenvalue; Oboudi [10] completely characterized the simple graphs with exactly two non-
negative eigenvalues. With respect to signed graphs, Yu et al. [7] determined the signed
graphs with exactly one positive eigenvalue and the signed graphs containing pendant ver-
tices with exactly two positive eigenvalues; X.L. Wang et al. [5] extended the above work
to the signed graphs containing cut vertices with exactly two positive eigenvalues. With
respect to mixed graphs, Wissing and van Dam [3] characterized all mixed graphs with
exactly one negative eigenvalue; Wei et al. [4] investigated relations between the number
of positive (negative) eigenvalues of a mixed graph and those of its underlying graph; Yuan
et al. [8] provided a characterization of mixed graphs with exactly one positive eigenvalue,
and studied some classes of mixed graphs determined by their H-spectra. With respect to
gain graphs, Lu et al. [11] characterized the structure of complex unit gain graphs with
exactly one positive eigenvalue and investigated the complex unit gain graphs with exactly
two eigenvalues different from 0 and −1; Zaman et al. [12] investigated relations between
the number of positive (negative) eigenvalues of a complex unit gain graph and those of its
underlying graph. Motivated by such works, in this paper, we characterize the structure of
theT4-gain graphs with exactly one positive eigenvalue and determine theT4-gain graphs
with cut vertices having exactly two positive eigenvalues.
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2. Preliminaries

Firstly, we define a graph which will play an important role in the paper. LetV1,V2, . . . ,Vk
be the colour sets of Kn1,n2,...,nk . If there exist ηij ∈ T4 for 1 ≤ i < j ≤ k such that the T4-
gain graph� = (Kn1,n2,...,nk ,T4,ϕ) satisfies:

(a) ϕ(vsvt) = ηst for any vs ∈ Vs, vt ∈ Vt and 1 ≤ s < t ≤ k;
(b) η1t = 1 for any 2 ≤ t ≤ k,

then � is called a standard k-partite graph, denoted by (Kn1,n2,...,nk ; [ηst | 2 ≤ s < t ≤
k]). Clearly, the simple graphKn1,n2,...,nk is a standard k-partite graph, namely,Kn1,n2,...,nk =
(Kn1,n2,...,nk ; [1, 1, . . . , 1]). In particular, we write �Kn1,n2,n3 for (Kn1,n2,n3 ; [i]).

Let u, v be distinct vertices of� = (G,T4,ϕ). If NG(u) = NG(v) and ϕ(uw) = ξϕ(vw)
for all w ∈ NG(u) with ξ ∈ {1,−1, i,−i}, we say that u and v are twin points and denoted
this relation by uRv. It is easy to see thatR is an equivalence relation on V(G). A T4-gain
graph� = (G,T4,ϕ) is said to be reduced if, for each vertex v in�, v has no twin points.
One can easily see that deleting a twin point of a given vertex from a graph does not change
its inertia indices. In fact, we will see that such operation is invertible. To see this, we first
introduce a graph transformation. Given a graph G with vertex set V(G) = {v1, . . . , vn}
and a vectorm = (m1,m2, . . . ,mn)whose components are positive integers, we denote by
G ◦ m the graph obtained from G by replacing each vertex vi of G with an independent set
of mi vertices v1i , v

2
i , . . . , v

mi
i and joining vsi with vtj if and only if {vi, vj} ∈ E(G). For a T4-

gain graph� = (G,T4,ϕ), let� ◦ m = (G ◦ m,T4,ϕ′) be aT4-gain graphwithϕ′(vsiv
t
j) =

ϕ(vivj) for any {vi, vj} ∈ E(G), 1 ≤ s ≤ mi and 1 ≤ t ≤ mj. Nowwe get the following result.

Lemma 2.1: Let � = (G,T4,ϕ) be a T4-gain graph. Then there exists a reduced T4-gain
graph �′ = (G′,T4,ϕ′) having the same inertia indices as that of �, and a vector m such
that� ∈ [�′ ◦ m].

Proof: If� is reduced, then let�′ = � and the result holds with�′ andm = (1, 1, . . . , 1).
If � is not reduced, then there is an equivalence partition V(G) = V1 ∪ V2 ∪ · · · ∪ Vp

with respect to R. Assume |Vj| = mj and Vj = {v1j , v2j , . . . , v
mj
j } for 1 ≤ j ≤ p. By the

definition of twin points, for each 1 ≤ j ≤ p and 1 ≤ k ≤ mj, there is a ξjk ∈ {1,−1, i,−i}
such that ϕ(v1j w) = ξjkϕ(vkj w) for all w ∈ NG(v1j ). Especially, ξj1 = 1. Let �̂ = (G,T4,ϕ1)
be a T4-gain graph with ϕ1(vkj v

t
s) = ϕ1(v1j v

t
s) = ϕ(v1j v

t
s)ξ

−1
st for any vts ∈ NG(v1j ), 1 ≤

j ≤ p and 1 ≤ k ≤ mj. Note that ξjkϕ(vkj v
t
s)ξ

−1
st = ξj1ϕ(v1j v

t
s)ξ

−1
st = ϕ1(v1j v

t
s) for any vts ∈

NG(v1j ). We have SA(�)S−1 = A(�̂) where S = diag(ξ11, . . . , ξ1m1 , . . . , ξp1, . . . , ξpmp). It
means that � ∈ [�̂]. Let �′ be the subgraph of �̂ induced by {v11, v12, . . . , v1p}, that
is, �′ = �̂[v11, v

1
2, . . . , v

1
p]. It is clear that �′ is reduced and �̂ = �′ ◦ m where m =

(m1,m2, . . . ,mp). The result follows. �

Remark 2.1: The T4-gain graph �′ constructed in Lemma 2.1 is called a twin reduction
graph of�. Note that theremay bemany twin reduction graphs of� but they are switching
equivalent.
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The characterization of simple graphs with exactly one positive eigenvalue has been
given by Smith [9].

Lemma 2.2 ([9]): Let G be a simple graph. Then p(G) = 1 if and only if its non-isolated
vertices induce a complete multipartite graph.

Next, we present the following elementary theorem. Let C : v1v2 . . . vnv1 be a cycle of
� = (G,T4,ϕ). The gain ϕ(C) of C is the product ϕ(v1v2)ϕ(v2v3) · · ·ϕ(vnv1). The cycle C
is balanced if ϕ(C) = 1. A T4-gain graph� is said to be balanced if no unbalanced cycles
exist, otherwise it is called unbalanced.

Lemma 2.3 ([13]): For a T4-gain graph � = (G,T4,ϕ), it is balanced if and only if every
induced cycle of� is balanced if and only if� ∈ [G].

Now we present some known results on inertia indices of graphs.

Lemma 2.4 ([12]): Let � = (G,T4,ϕ) be a T4-gain graph with u ∈ V(G). Then p(�)−
1 ≤ p(�− u) ≤ p(�), n(�)− 1 ≤ n(�− u) ≤ n(�).

Lemma 2.5 ([14]): Let � = (G,T4,ϕ) be a T4-gain graph containing a pendant vertex v
with the unique neighbour u. Then p(�) = p(�− u − v)+ 1, n(�) = n(�− u − v)+ 1,
η(�) = η(�− u − v). Moreover, rank(�) = rank(�− u − v)+ 2.

We end up this part by some known results on gain graphs with exactly one positive
eigenvalue, which are borrowed from [11] and will be used later.

Lemma 2.6 ([11]): Let � = (G,T4,ϕ) be a T4-gain graph and u be a vertex of G. If
NG(u) = {v1, . . . , vs}, then there exists�′ = (G,T4,ϕ′) ∈ [�] such thatϕ′(uvi) = 1 for any
vi ∈ NG(u).

Lemma 2.7 ([11]): If the connected T4-gain graph� = (G,T4,ϕ) has exactly one positive
eigenvalue, then there exists a standard k-partite graph�′ = (Kn1,n2,...,nk ; [ηst | 2 ≤ s < t ≤
k]) such that� ∈ [�′].

Lemma 2.8 ([11]): Let � = (G,T4,ϕ) be a T4-gain graph with order n, and H be a sub-
graph of G. If the eigenvalues of� and�[H] are λ1 ≥ λ2 ≥ · · · ≥ λn andμ1 ≥ μ2 ≥ · · · ≥
μm respectively, then λn−m+i ≤ μi ≤ λi for 1 ≤ i ≤ m.

To depict T4-gain graphs in Figures 1–4, each continuous (respectively, dashed) thick
undirected line segment represents two opposite oriented edges with gain 1 (respectively,
−1), whereas the arrows detect the oriented edges uv such that ϕ(uv) = i. The other pos-
sible choice for the arrow direction not employed here-namely using an arrow from v to u
to denote the oriented edge uv such that ϕ(uv) = i-would lead to an alternative and fully
satisfactory way to ‘read’ the imaginary gains from the drawings.
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Figure 1. T4-gain graphs in Theorem4.4, where a, b ≥ 2 and a bold line segment connecting two parts
represents that each vertex in one part is adjacent to all vertices in the other part.

3. T4-gain graphs with exactly one positive eigenvalue

Firstly, we consider the T4-gain graphs with underlying graph being K4.

Lemma 3.1: Let � = (K4,T4,ϕ) be a T4-gain graph. Then rank(�) = 4. If � =
(K4,T4,ϕ) is unbalanced, then p(�) ≥ 2.

Proof: Let V(K4) = {v1, v2, v3, v4}. By Lemma 2.6, there exists �′ = (K4,T4,ϕ′) ∈ [�]
such that ϕ′(v1vs) = 1 for any 2 ≤ s ≤ 4. The adjacency matrix of�′ can be written as

A(�′) =

⎛⎜⎜⎝
v1 v2 v3 v4

v1 0 1 1 1
v2 1 0 x y
v3 1 x∗ 0 z
v4 1 y∗ z∗ 0

⎞⎟⎟⎠.

Then, det(A(�′)) = 3 − 2Re(xz + xy∗ + yz∗) �= 0. Thus, rank(�) = rank(�′) = 4.
If � = (K4,T4,ϕ) is unbalanced, suppose to the contrary that � has exactly

one positive eigenvalue. Let μ1 ≥ μ2 ≥ μ3 ≥ μ4 be the eigenvalues of �′. For
any 2 ≤ s < t ≤ 4, the characteristic polynomial of �′[v1, vs, vt] is f (λ) = λ3 − 3λ−
2Re(ϕ′(vsvt)). Since μ2(�

′[v1, vs, vt]) ≤ 0 due to μ2(�
′) ≤ 0 and Lemma 2.8, we get

f (0) = −2Re(ϕ′(vsvt)) ≤ 0 and thus Re(ϕ′(vsvt)) ≥ 0. Since�′ is an unbalanced T4-gain
graph and Re(x), Re(y), Re(z) ≥ 0, we have x, y, z �= −1 and at least one of x, y, z, x∗, y∗, z∗
is equal to i. Without loss of generality, assume x = i. In what follows, we show that
det(A(�′)) > 0.

If det(A(�′)) = 3 − 2Re(xz + xy∗ + yz∗) ≤ 0, then Re(xz + xy∗ + yz∗) is equal to 2
or 3. If Re(xz + xy∗ + yz∗) = 2, then of the three numbers Re(xz), Re(xy∗) and Re(yz∗),
exactly one is 0 and the other two are 1. When Re(xz) = 0, we have Re(xy∗) = Re(yz∗) =
1, and equality holds only if x = y = z = i. Thus xz = i2 = −1 contradicts Re(xz) = 0.
Similarly, Re(xy∗) = 0 or Re(yz∗) = 0 is impossible. Therefore, Re(xz + xy∗ + yz∗) = 3,
and Re(xz) = Re(xy∗) = Re(yz∗) = 1. Since x = i, we have Re(xz) = Re(xy∗) = 1 holds
only if y = i, z = −i. Thus yz∗ = i2 = −1 contradicts Re(yz∗) = 1. Hence, det(A(�′)) >
0. Therefore,�′ and hence� has at least two positive eigenvalues, a contradiction. �
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Now we are ready to present one of our main results.

Theorem 3.1: Let � = (G,T4,ϕ) be a connected T4-gain graph. Then � has exactly one
positive eigenvalue if and only if� ∈ [Kn1,...,nk] for some k or� ∈ [�Kn1,n2,n3 ].

Proof: Note that �K1,1,1 is a twin reduction graph of �Kn1,n2,n3 . By Lemma 2.1, p(�Kn1,n2,n3) =
p(�K1,1,1). The sufficiency follows from p(�K1,1,1) = 1 and Lemma 2.2. In what follows, we
show the necessity.

If� is balanced, by Lemma 2.3,� is switching equivalent to its underlying graph. From
Lemma 2.2, we deduce that� ∈ [Kn1,...,nk] for some k. If� is unbalanced, by Lemmas 2.7
and 3.1, G is a complete tripartite graph and there exists a standard 3-partite graph �′ =
(Kn1,n2,n3 ; [η23]) such that � ∈ [�′]. Note that (K1,1,1; [η23]) is a twin reduction graph of
�′.We have p(K1,1,1; [η23]) = p(�′) = 1, which leads to η23 ∈ {±i} by a direct calculation.
Hence,� ∈ [�Kn1,n2,n3 ]. �

Remark 3.1: It is well known that the connected graphs with exactly one positive eigen-
value are complete multipartite graphs. It is natural to investigate other graphs with exactly
one positive eigenvalue, such as signed graphs, mixed graphs and so on. Since all such
graphs are special cases of complex unit gain graphs, in [11] the authors try to completely
determine all complex unit gain graphs with exactly one positive eigenvalues. However,
it seems impossible to give a complete characterization of such graphs because the gain
of each edge could be arbitrary complex unit and the eigenvalues of a complex unit gain
graph strongly rely on the gains of it edges. Thus, in [11] the authors just gave a necessary
condition on connected complex unit gain graphs with exactly one positive eigenvalue. So,
we restrict this problem on T4-gain graphs, and Theorem 3.1 completely solved it. In fact,
Theorem 3.1 is a specialization of the analogous result in [11].

Recall that mixed graphs and signed graph are special T4-gain graphs. Theorem 3.1
implies one of the results in [8] and one of the results in [7].

Corollary 3.1 ([8]): Let G̃ be a connected mixed graph. Then p(G̃) = 1 if and only if � ∈
[Kn1,...,nk] for some k or� ∈ [�Kn1,n2,n3 ].

Corollary 3.2 ([7]): Let �(G) be a connected signed graph. Then p(�(G)) = 1 if and only
if �(G) ∈ [Kn1,...,nk] for some k.

4. On T4-gain graphs with exactly two positive eigenvalues

We first consider T4-gain graphs with pendant vertices.

Theorem4.1: Let� = (G,T4,ϕ) be a connectedT4-gain graphwith pendant vertices. Then
p(�) = 2 if and only if � is obtained by adding some T4-gain edges between the centre of a
T4-gain star and some vertices of Fϕ , where Fϕ ∈ [Kn1,...,nk] for some k or Fϕ ∈ [�Kn1,n2,n3].

Proof: The sufficiency is immediately from Theorem 3.1 and Lemma 2.5, and we prove
the necessity in what follows.
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Assume that � is a T4-gain graph and v1 is a pendant vertex of � with neighbour
v2. Since p(�) = 2, by Lemma 2.5, we have p(�− v1 − v2) = p(�)− 1 = 1. Let Fϕ be
the subgraph induced by all non-isolated vertices of�− v1 − v2. Therefore, Theorem 3.1
implies that Fϕ ∈ [Kn1,...,nk] for some k or Fϕ ∈ [�Kn1,n2,n3 ]. The result follows. �

Lemma 2.1 indicates that in order to characterize all T4-gain graphs having exactly two
positive eigenvalues, it suffices to characterize all reduced ones having exactly two positive
eigenvalues. Since the T4-gain graphs having pendant vertices with p(�) = 2 have been
characterized inTheorem4.1, it only needs to consider the reducedT4-gain graphswithout
pendant vertices. In what follows, all graphs are assumed to be reduced graphs without
pendant vertices if there is no additional statement.

For convenience, denote by G the set of connected reduced T4-gain graphs with a cut
vertex, which have no pendant vertices and have exactly two positive eigenvalues. Now,
our goal is to determine G. Let� = (G,T4,ϕ) ∈ G be an arbitrary T4-gain graph with cut
vertex v. Therefore, our goal is to determine�.

Lemma 4.1: The graph �− v has exactly two components �1 = (G1,T4,ϕ1) and �2 =
(G2,T4,ϕ2), and p(�i) = 1 for 1 ≤ i ≤ 2.

Proof: Suppose that�− v = �1
⋃
�2

⋃ · · · ⋃�t is the disjoint union of different com-
ponents of �− v. Since v is a cut vertex of �, we have t ≥ 2. Since � has no pendant
vertices, we have �i has at least one edge for all i = 1, 2, . . . , t. Hence, p(�i) ≥ 1 for all
i = 1, 2, . . . , t. From 2 = p(�) ≥ p(�− v) = p(�1)+ · · · + p(�t), it follows that t = 2.
Hence,�− v has exactly two components�1 and�2 and p(�i) = 1 for 1 ≤ i ≤ 2. �

Lemma 4.2: rank(�) ≤ rank(�1)+ rank(�2)+ 1, and rank(�i + v) ≤ rank(�i)+ 1
for 1 ≤ i ≤ 2.

Proof: By Lemma 2.4, we have

rank(�) = p(�)+ n(�) ≤ p(�− v)+ 1 + n(�− v)+ 1

= p(�1)+ p(�2)+ n(�1)+ n(�2)+ 2

= rank(�1)+ rank(�2)+ 2.

If the equality holds, then p(�) = p(�− v)+ 1 = p(�1)+ p(�2)+ 1 = 3, a contradic-
tion. Thus, rank(�) ≤ rank(�1)+rank(�2)+ 1.

Note that v is a cut vertex of �. If rank(�j + v) = rank(�j)+ 2 for some j, then
rank(�) = rank(�− v)+ 2 = rank(�1)+ rank(�2)+ 2 contradicts the first statement.
Hence, rank(�i + v) ≤ rank(�i)+ 1 for 1 ≤ i ≤ 2. �

Clearly, 1 ≤ p(�i + v) ≤ 2 for 1 ≤ i ≤ 2. Without loss of generality, assume that
p(�1 + v) ≤ p(�2 + v). Combining Lemmas 4.1 and 4.2, we get the following result.

Lemma 4.3: p(�1 + v) = 1.
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Proof: Suppose to the contrary that p(�i + v) = 2 for 1 ≤ i ≤ 2. The adjacency matrix of
� is

A(�) =
⎛⎝A(�1) τ 0

τ ∗ 0 ψ∗
0 ψ A(�2)

⎞⎠.

By Lemma 4.2, both equationsA(�1)X = τ andA(�2)Y = ψ have solutions. LetX1 (resp.
Y1) be a solution to A(�1)X = τ (resp. A(�2)Y = ψ). Set

W =
⎛⎝I −X1 0
0 1 0
0 −Y1 I

⎞⎠, and thereby

W∗A(�)W =
⎛⎝A(�1) 0 0

0 −τ ∗X1 − ψ∗Y1 0
0 0 A(�2)

⎞⎠.

Since p(W∗A(�)W) = p(�) = p(�1)+ p(�2), we have −τ ∗X1 − ψ∗Y1 ≤ 0. From
p(�1 + v) = p(�2 + v) = 2, we have −τ ∗X1 > 0 and −ψ∗Y1 > 0. Hence, −τ ∗X1 −
ψ∗Y1 > 0, a contradiction. �

Next, we divide two cases to discuss, namely, p(�i + v) = 1 for 1 ≤ i ≤ 2, and p(�1 +
v) = 1 and p(�2 + v) = 2.

Theorem 4.2: If p(�i + v) = 1 for 1 ≤ i ≤ 2, then � is switching equivalent to one of the
following T4-gain graphs present in Figure 1:

(i) P3(a, 1, b), P4(1, a, 1, b), P5(1, a, 1, b, 1), where a, b ≥ 2;
(ii) P3(a, 1, �2), P4(a, 1, �2, 1), P4(1, a, 1, �2), P5(1, a, 1, �2, 1), P4(1, �2, 1, �2), P5(1, �2, 1, �2, 1),

P3(�2, 1, �2).

Proof: For 1 ≤ i ≤ 2, since p(�i + v) = 1, Theorem 3.1 indicates that�i + v ∈ [Kn1,...,nk]
for some k or�i + v ∈ [�Kn1,n2,n3 ]. In what follows, we divide three cases to discuss.

Case 1.�1 + v ∈ [Kl1,...,ls] and�2 + v ∈ [Kn1,...,nt ].
Without loss of generality, assume that l1 ≥ l2 ≥ · · · ≥ ls and n1 ≥ n2 ≥ · · · ≥ nt . Since

� is reduced, we have li = nj = 1 for 2 ≤ i ≤ s and 2 ≤ j ≤ t, and 1 ≤ l1, n1 ≤ 2. Further-
more, if l1 = 2 (or n1 = 2), then there is a vertex v′ ∈ �1 (resp. v′ ∈ �2) such that v and v′
are twins in�1 + v (resp.�2 + v). If l1 = n1 = 1, then� ∈ [P3(s − 1, 1, t − 1)]. If one of
l1 and n1 equal to 1, say l1 = 1 and n1 = 2, then� ∈ [P4(s − 1, 1, t − 1, 1)]. If l1 = n1 = 2,
then� ∈ [P5(1, s − 1, 1, t − 1, 1)].

Case 2.�1 + v ∈ [�Kl1,l2,l3 ] and�2 + v ∈ [�Kn1,n2,n3].
Without loss of generality, assume that l1 ≥ l2 ≥ l3 and n1 ≥ n2 ≥ n3. Since � is

reduced, we have li = nj = 1 for 2 ≤ i, j ≤ 3, and 1 ≤ l1, n1 ≤ 2. Furthermore, if l1 = 2
(or n1 = 2), then there is a vertex v′ ∈ �1 (resp. v′ ∈ �2) such that v and v′ are twins in
�1 + v (resp.�2 + v). If l1 = n1 = 1, then� ∈ [P3(�2, 1, �2)]. If one of l1 and n1 equal to 1,
say l1 = 1 and n1 = 2, then� ∈ [P4(�2, 1, �2, 1)]. If l1 = n1 = 2, then� ∈ [P5(1, �2, 1, �2, 1)].

Case 3.�1 + v ∈ [Kl1,...,ls] and�2 + v ∈ [�Kn1,n2,n3].



LINEAR ANDMULTILINEAR ALGEBRA 9

Similarly, one could easily verify that � ∈ [P3(s − 1, 1, �2)] ∪ [P4(1, s − 1, 1, �2)] ∪
[P4(s − 1, 1, �2, 1)] ∪ [P5(1, s − 1, 1, �2, 1)]. �

It remains to consider the case that p(�1 + v) = 1 and p(�2 + v) = 2.

Lemma 4.4: If p(�1 + v) = 1 and p(�2 + v) = 2, then we have

(i) �1 + v ∈ [Kq] for some q or�1 + v ∈ [�K1,1,1];
(ii) �2 ∈ [Kt] for some t or�2 ∈ [�K1,1,1].

Proof: By Theorem 3.1, �1 + v is a balanced complete multipartite graphs or switching
equivalent to �Kn1,n2,n3 . Suppose to the contrary that (i) is not true. Since � is reduced, we
conclude that there exists a vertex v1 in�1 which is a twin point of v in�1 + v. Therefore,
vv1 /∈ E(G) andNG1+v(v1) = NG1+v(v). Let u ∈ NG1+v(v1). Since v1u is a pendant edge of
�[{v1, u, v} ∪ V(G2)], by Lemma 2.5, we have

p(�) ≥ p(�[{v1, u, v} ∪ V(G2)]) = p(�2 + v)+ 1 = 3,

a contradiction. Thus, (i) holds.
By Lemma4.1 andTheorem3.1,�2 is a balanced completemultipartite graph or switch-

ing equivalent to �Kn1,n2,n3 . Suppose for a contradiction that (ii) is not true. Therefore,
�2 has two vertices u1, u2 such that NG2(u1) = NG2(u2) and ϕ(u1w) = ξϕ(u2w) for all
w ∈ NG2(u1), where ξ ∈ {1,−1, i,−i}. Since � is reduced, we know at least one of u1, u2,
say u1, is adjacent to v.

If u2 is not adjacent to v, then

NG(u1) = NG2(u1) ∪ {v} = NG2(u2) ∪ {v} = NG(u2) ∪ {v}.
Let �̃ be a T4-gain graph obtained from � by deleting all edges {u1,w} for w ∈ NG2(u1).
Let Eu1,u2 be thematrix of order |V(G)|whose unique nonzero entry 1 is at the row indexed
by u1 and the column indexed by u2. Since

A(�̃) = (I|V(G)| − ξEu1,u2)A(�)(I|V(G)| − ξEu1,u2)
∗,

we have p(�) = p(�̃). Then, u1 is a pendant vertex adjacent to v in �̃. Using Lemma 2.5,
we have

p(�) = p(�̃) = p(�̃− u1 − v)+ 1 = p(�1)+ p(�2 − u1)+ 1 = 3,

a contradiction.
If u2 is adjacent to v, then ϕ(u1v) �= ξϕ(u2v) because� is reduced. Therefore, from (i),

� must contain an induced subgraph switching equivalent to one of the T4-gain graphs
F1, F2, F3 and F4 depicted in Figure 2. By calculations, for 1 ≤ j ≤ 4, we have

det(A(Fj)) = 2Re(ϕj(vu1)ϕj(vu2)∗)− 2 ≤ 0,

with equality if and only if ϕj(vu1) = ϕj(vu2). Since

ϕj(vu1) = ϕj(u1v)∗ �= ϕj(u2v)∗ = ϕj(vu2),

we have det(A(Fj)) �= 0 and F1, F2, F3, F4 all have at least three positive eigenvalues. Hence,
by Lemma 2.8, we obtain p(�) ≥ 3, a contradiction. Thus, (ii) holds. �
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Figure 2. T4-gain graphs F1, F2, . . . , F6, where ϕj(vu1) �= ϕj(vu2) (1 ≤ j ≤ 4), and
ϕ5(vu1),ϕ5(vu2),ϕ5(vu3) are different from each other.

Figure 3. T4-gain graphs F7, F8, F9, F10, where all unmarked edges are assigned 1.

Figure 4. T4-gain graphs P4(s, 1,α, γ ), P4(s, 1,α1 ∨ β−1, γ ) and P4(r, 1, a1 ∨ bi, c).

Lemma 4.4 indicates the possible structures of �1 + v and �2. In fact, we further get
the following results.

Lemma 4.5: If p(�1 + v) = 1 and p(�2 + v) = 2, then�2 ∈ [Kt] for some t.

Proof: Lemma 4.4 indicates that either �2 ∈ [Kt] or �2 ∈ [�K1,1,1]. Suppose to the con-
trary that �2 = [�K1,1,1]. If v is adjacent to exactly one vertex of �2, let u be the vertex
of �2 adjacent to v, then Lemma 2.5 implies that rank(�2 + v) = rank(�2 − u)+ 2 =
4 = rank(�2)+ 2, contradicts Lemma 4.2; if v is adjacent to all vertices of �2 in �2 + v,
then Lemma 3.1 implies that rank(�2 + v) = 4 = rank(�2)+ 2, contradicts Lemma 4.2.
Therefore, v is adjacent to exactly two vertices of �2 in �2 + v, and thus �2 + v is
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switching equivalent to the form of F6 (see Figure 2). The adjacency matrix of F6 is

A(F6) =

⎛⎜⎜⎝
0 ϕ6(vu1) ϕ6(vu2) 0

ϕ6(vu1)∗ 0 1 i
ϕ6(vu2)∗ 1 0 1

0 −i 1 0

⎞⎟⎟⎠ .

By immediate calculations, the characteristic polynomial of F6 is equal to

f (λ) = λ4 − 5λ2 − Re(ϕ6(vu1)ϕ6(vu2)∗)λ+ 2[1 + Im(ϕ6(vu1)ϕ6(vu2)∗)].

Since p(�2) = 1 and p(�2 + v) = 2, we have rank(�2 + v) ≥ rank(�2)+ 1. Note that
Lemma 4.2 indicates that rank(�2 + v) ≤ rank(�2)+ 1.We have rank(F6) = rank(�2 +
v) = rank(�2)+ 1 = 3, which leads to that the coefficient of λ is not equal to 0 and f (λ) =
0. It leads to Re(ϕ6(vu1)ϕ6(vu2)∗) �= 0 and 1 + Im(ϕ6(vu1)ϕ6(vu2)∗) = 0, which cannot
hold at the same time. �

Lemma 4.6: If p(�1 + v) = 1 and p(�2 + v) = 2, then�1 + v ∈ [Ks] for some s.

Proof: Suppose to the contrary that�1 + v ∈ [�K1,1,1]. Lemma 4.5 indicates that�2 ∈ [Kt]
for some t. If there are two vertices of �2 not adjacent to v in �, then � has an induced
subgraph switching equivalent to F7. By direct calculations, we have p(F7) = 3, and thus
p(�) ≥ 3 according to Lemma 2.8, a contradiction. If there is exactly one vertex u of�2 not
adjacent to v in�, then� has an induced subgraph switching equivalent to F8. Lemma 2.8
implies that 2 = p(F8 − v) ≤ p(F8) ≤ p(�) = 2, and thereby p(F8) = 2. By direct calcula-
tions, p(F8) = 2 if and only ifϕ8(vu1) = ϕ8(vu2). By the arbitrariness ofu1 andu2, all edges
from v to �2 obtain the same gain in T4. Hence, v and u are twin points in �2 + v. And
p(�2 + v) = p(�2) = 1, a contradiction. Therefore, v is adjacent to all vertices of�2, and
thus � is switching equivalent to a T4-gain graph �̂ such that �̂[V(�1) ∪ {v}] = �K1,1,1
and �̂[V(�2)] = Kt . Next we prove t = 2. Otherwise, let u1, u2, u3 be three vertices of
�̂[V(G2)]. Then �̂[V(G1) ∪ {v, u1, u2, u3}] is F9. By Lemma 2.8, we have 2 = p(F9 − v) ≤
p(F9) ≤ 2. Hence, p(F9) = 2. Since it is easy to see that F9 − v has three negative eigen-
values, Lemma 2.8 implies that F9 has at least three negative eigenvalues. It means that
p(F9) = 2 if and only if det(A(F9)) ≥ 0. By immediate calculations, we have

det(A(F9))

= 2
[
Re(ϕ9(vu1)ϕ9(vu2)

∗)+ Re(ϕ9(vu1)ϕ9(vu3)
∗)+ Re(ϕ9(vu2)ϕ9(vu3)

∗)
] − 3.

It is easy to see that det(A(F9)) ≥ 0 if and only if ϕ9(vu1) = ϕ9(vu2) = ϕ9(vu3). By the
arbitrariness ofu1, u2, u3, all the edges from v toV(G2) in �̂ obtain the same gain.Hence, �̂
is switching equivalent to a T4-gain graph �̂1 such that �̂1[V(G2) ∪ {v}] ∈ [Kt+1]. Thus,
�2 + v ∈ [Kt+1], contradicts the assumption of p(�2 + v) = 2. Hence, t = 2.

By the above discussions, we have � ∈ [F10]. Hence, �2 + v is switching equivalent
to F10[v, u1, u2], and thereby p(F10[v, u1, u2]) = 2. It yields, by direct calculations, that
ϕ10(vu1) = −ϕ10(vu2). Note that we also have p(�) = p(F10) = 2. By immediate calcu-
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lations, we have either ϕ10(vu1) = ϕ10(vu2) or ϕ10(vu1) = (±i)ϕ10(vu2), contradicting the
equation ϕ10(vu1) = −ϕ10(vu2) (Figure 3).

The proof is completed. �

Combining Lemmas 4.5 and 4.6, it remains to consider the condition that�1 + v ∈ [Ks]
for some s and �2 ∈ [Kt] for some t. Before discussing this condition, we need to intro-
duce two classes of T4-gain graphs. For integers s ≥ 2,α ≥ β ≥ 0, γ ≥ 0, let P4(s, 1,α1 ∨
β−1, γ ) be the T4-gain graph obtained from Ks and Kα+β+γ by adding a new vertex v and
adding s + α + β edges such that v is adjacent to s vertices of Ks and adjacent to α + β

vertices of Kα+β+γ , where β edges from v to Kα+β+γ obtain gain −1 and all the other
edges have gain 1 (see Figure 4). Especially, if β = 0, we use the notation P4(s, 1,α, γ ) for
P4(s, 1,α1 ∨ 0−1, γ ). For integers r ≥ 2, a ≥ b ≥ 1, c ≥ 0, let P4(r, 1, a1 ∨ bi, c) be the T4-
gain graph obtained from Kr and Ka+b+c by adding a new vertex v and adding r+ a+ b
edges such that v is adjacent to r vertices of Kr and adjacent to a+ b vertices of Ka+b+c,
where b edges from v to Ka+b+c obtain gain i and all the other edges have gain 1 (see
Figure 4).

Theorem 4.3: If p(�1 + v) = 1 and p(�2 + v) = 2, then � is switching equivalent to one
of the following T4-gain graphs:

(i) P4(s, 1,α, γ ), where s ≥ 2,α ≥ 1, γ ≥ 2, 1
γ−1 ≥ 1 − 1

s − 1
α
.

(ii) P4(2, 1, 11 ∨ 1−1, γ ), where γ ≥ 0.
(iii) P4(r, 1, a1 ∨ bi, c), where (a, b, c, r) ∈ {(a, 1, c, r) | r ≥ 2, a ≥ 1, ac−1

a+c ≤ 1
r−1 } ∪ S

and

S = {(2, 2, 0, 2), (2, 2, 0, 3), (2, 2, 0, 4), (3, 2, 0, 2),
(4, 2, 0, 2), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 2), (2, 2, 3, 2)} .

Proof: According to Lemmas 4.5 and 4.6, we conclude that�1 + v ∈ [Ks] for some s and
�2 ∈ [Kt] for some t. We claim that there are not three edges between v and�2 that obtain
three different gains. Otherwise, � will contain an induced subgraph in [F5], where F5 is
depicted in Figure 2. By a direct calculation, we have det(A(F5)) = −1, which implies that
p(F5) ≥ 3, a contradiction. Hence,� is switching equivalent to

P4(s, 1,α, γ ),P4(s, 1,α1 ∨ β−1, γ ) or P4(r, 1, a1 ∨ bi, c)

for some s, r ≥ 2,α ≥ β ≥ 1, a ≥ b ≥ 1 and γ , c ≥ 0.
Case 1.� ∈ [P4(s, 1,α, γ )], where s ≥ 2,α ≥ 1 and γ ≥ 0.
Since p(�2 + v) = 2, we have γ ≥ 2. By the knowledge of equitable partition ([15, Page

198]), the eigenvalues of P4(s, 1,α, γ ) consist of −1 with multiplicity s + α + γ − 3 and
the roots of f (λ) = det(λI − Aπ), where

Aπ =

⎛⎜⎜⎝
s − 1 1 0 0
s 0 α 0
0 1 α − 1 γ

0 0 α γ − 1

⎞⎟⎟⎠.
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It is easy to see that Aπ has at least one negative eigenvalue. Therefore, p(Aπ) = 2 if and
only if det(Aπ) ≥ 0. By simple calculations, we have

det(Aπ) = (α + s)(γ − 1)− αs(γ − 2).

Thus det(Aπ) ≥ 0 if and only if 1
γ−1 ≥ 1 − 1

s − 1
α
.

Case 2.� ∈ [P4(s, 1,α1 ∨ β−1, γ )], where s ≥ 2,α ≥ β ≥ 1 and γ ≥ 0.
Firstly, by an elementary calculation, we have

p(P4(2, 1, 21 ∨ 1−1, 0)) = p(P4(3, 1, 11 ∨ 1−1, 0)) = 3.

Hence, by Lemma 2.8, we have p(P4(s, 1,α1 ∨ β−1, γ )) = 2 only if α = β = 1 and s = 2.
If γ = 0, we have p(P4(2, 1, 11 ∨ 1−1, 0)) = 2. We now consider γ ≥ 1. By the knowl-

edge of equitable partition ([15, Page 198]), the eigenvalues of P4(2, 1, 11 ∨ 1−1, γ ) consist
of −1 with multiplicity γ and the roots of

f (λ) = det(λI − Aπ) = λ5 − γ λ4 − (6 + γ )λ3 + 5γ λ2 + (5γ + 5)λ

= λ(λ+ 1)(λ2 − 5)(λ− γ − 1)

where

Aπ =

⎛⎜⎜⎜⎜⎝
1 1 0 0 0
2 0 1 −1 0
0 1 0 1 γ

0 −1 1 0 γ

0 0 1 1 γ − 1

⎞⎟⎟⎟⎟⎠.

It is easy to see that Aπ has exactly two positive eigenvalues. Hence, p(P4(2, 1, 11 ∨
1−1, γ )) = p(Aπ) = 2.

Case 3.� ∈ [P4(r, 1, a1 ∨ bi, c)], where r ≥ 2, a ≥ b ≥ 1 and c ≥ 0.
Similarly, by using the knowledge of equitable partition, the eigenvalues of P4(r, 1, a1 ∨

bi, c) consist of−1 withmultiplicity r+ a+ b+ c−4 and the roots of f (λ) = det(λI − Aπ)
where

Aπ =

⎛⎜⎜⎜⎜⎝
r − 1 1 0 0 0
r 0 a bi 0
0 1 a − 1 b c
0 −i a b − 1 c
0 0 a b c − 1

⎞⎟⎟⎟⎟⎠,

and thus p(Aπ) = p(P4(r, 1, a1 ∨ bi, c)) = 2. By a direct calculation, we obtain

det(Aπ) = a(2b + c)(r − 1)− 2r(a + b)− c(b + r − br)+ a + b + r.

Note that the matrix

B =
⎛⎝a − 1 b c

a b − 1 c
a b c − 1

⎞⎠
is a principal matrix of Aπ and the spectrum of B is {a + b + c − 1,−1[2]}. Hence, by
Lemma 2.8, Aπ has at least two negative eigenvalues. Therefore, p(Aπ) = 2 if and only
if det(Aπ) ≤ 0.
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It is easy to see that

det(Aπ) =
{
acr − ac − a − c − r + 1, if b = 1,
a(2r + cr − c − 3)− 3r − 2c + cr + 2, if b = 2.

Thus, if b = 1, then det(Aπ) ≤ 0 if and only if acr − ac − a − c − r + 1 ≤ 0 if and only if
ac−1
a+c ≤ 1

r−1 . In what follows, we assume b = 2.

• For c = 0. If a ≥ 5, then det(Aπ) ≥ 5(2r − 3)− 3r + 2 = 7r − 13 > 0. Hence,
det(Aπ) ≤ 0 only if a ≤ 4. Note that a ≥ b. If a = 2, then det(Aπ) = r − 4 ≤ 0 if and
only if r = 2, 3, or 4. If a = 3, then det(Aπ) = 3r − 7 ≤ 0 if and only if r = 2. If a = 4,
then det(Aπ) = 5r − 10 ≤ 0 if and only if r = 2.

• For c ≥ 1. If a ≥ 3, then det(Aπ) ≥ 3(2r + cr − c − 3)− 3r − 2c + cr + 2 = r(4c +
3)− (5c + 7) ≥ 2(4c + 3)− (5c + 7) = 3c − 1 > 0.Hence, det(Aπ) ≤ 0 only if a ≤ 2.
Note that a ≥ b. If a = 2, then det(Aπ) = 2(2r + cr − c − 3)− 3r − 2c + cr + 2 ≤ 0
if and only if c = 1 and either r = 2 or r = 3, or c = r = 2, or c = 3 and r = 2.

The proof is completed. �

Combining Theorems 4.2 and 4.3, we could get one of our main result immediately.

Theorem 4.4: Let� = (G,T4,ϕ) be a connected reducedT4-gain graph with a cut vertex v
and without pendant vertices. Then p(�) = 2 if and only if� is switching equivalent to one
of the following T4-gain graphs:

(i) P3(a, 1, b), P4(1, a, 1, b), P5(1, a, 1, b, 1), where a, b ≥ 2;
(ii) P3(a, 1, �2), P4(a, 1, �2, 1), P4(1, a, 1, �2), P5(1, a, 1, �2, 1), P4(1, �2, 1, �2), P5(1, �2, 1, �2, 1),

P3(�2, 1, �2);
(iii) P4(s, 1,α, γ ), where s ≥ 2,α ≥ 1, γ ≥ 2, 1

γ−1 ≥ 1 − 1
s − 1

α
;

(iv) P4(2, 1, 11 ∨ 1−1, γ ), where γ ≥ 0;
(v) P4(r, 1, a1 ∨ bi, c), where (a, b, c, r) ∈ {(a, 1, c, r) | r ≥ 2, a ≥ 1, ac−1

a+c ≤ 1
r−1 } ∪ S .

Theorem 4.4 immediately implies the following result on mixed graphs.

Corollary 4.1: Let G̃ be a connected twin reduction mixed graph with a cut vertex v and
without pendant vertices. Then p(G̃) = 2 if and only if G̃ is switching equivalent to one of the
following graphs:

(i) P3(a, 1, b), P4(1, a, 1, b), P5(1, a, 1, b, 1), where a, b ≥ 2;
(ii) P3(a, 1, �2), P4(a, 1, �2, 1), P4(1, a, 1, �2), P5(1, a, 1, �2, 1), P4(1, �2, 1, �2), P5(1, �2, 1, �2, 1),

P3(�2, 1, �2);
(iii) P4(s, 1,α, γ ), where s ≥ 2,α ≥ 1, γ ≥ 2, 1

γ−1 ≥ 1 − 1
s − 1

α
;

(iv) P4(2, 1, 11 ∨ 1−1, γ ), where γ ≥ 0;
(v) P4(r, 1, a1 ∨ bi, c), where (a, b, c, r) ∈ {(a, 1, c, r) | r ≥ 2, a ≥ 1, ac−1

a+c ≤ 1
r−1 } ∪ S .
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Note that �K1,1,1 cannot switching equivalent to a signed graph. We conclude that there
are no signed graphs in [�] when � is a graph belonging to (ii) or (v) in Theorem 4.4.
Therefore, Theorem 4.4 implies the following result on signed graphs.

Corollary 4.2 ([5]): Let �(G) be a connected twin reduction signed graph with a cut vertex
v andwithout pendant vertices. Then p(�(G)) = 2 if and only if�(G) is switching equivalent
to one of the following signed graphs:

(i) P3(a, 1, b), P4(1, a, 1, b), P5(1, a, 1, b, 1), where a, b ≥ 2.
(ii) P4(s, 1,α, γ ), where s ≥ 2,α ≥ 1, γ ≥ 2, 1

γ−1 ≥ 1 − 1
s − 1

α
.

(iii) P4(2, 1, 11 ∨ 1−1, γ ), where γ ≥ 0.
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