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ABSTRACT
In this paper, we consider the spectral radius of signless p-Laplacian
of a graph,which is a generalization of the quadratic formof the sign-
less Laplacian matrix for p = 2. Let Gn,β be the set of simple graphs
of order nwith a givenmatching number β . In this paper, the graphs
maximizing the largest signless p-Laplacian eigenvalue among Gn,β
are obtained.
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1. Introduction

We use standard notations fromRef. [1]. LetG be a simple connected graph with vertex set
V and edge set E. For two vertices u, v ∈ V , we write u ∼ v if uv ∈ E. For a vertex v ∈ V ,
the neighbourhood NG(v) of v is defined to beNG(v) = {u ∈ V | u ∼ v}, and the cardinal-
ity dG(v) of NG(v) is called the degree of v, i.e. dG(v) = |NG(v)|. As usual, the minimum
degree, the maximum degree and the average degree of G are denoted by δ(G), �(G) and
d(G), respectively. The distance dG(u, v) of two vertices u and v is the length of the shortest
path between u and v.

The Laplacian matrix L of G [2] is defined to be L = D−A, where D is the degree
diagonal matrix and A is the adjacency matrix. It is well known that L is a linear operator

L : RV → R
V , (Lf )(v) =

∑
u∼v

(f (v) − f (u)).

A natural generalization of Laplacian operator is p-Laplacian. For p>1, the p-Laplacian of
G [3] is the non-linear operator

Lp : RV → R
V , (Lpf )(v) =

∑
u∼v

sign(f (v) − f (u))|f (v) − f (u)|p−1,

where sign(x) is the sign-function of a number x, which is 1 if x>0, −1 if x<0 and 0
otherwise. If f ∈ R

V and μ ∈ R satisfy (Lpf )(v) = μsign(f (v))|f (v)|p−1 for every v ∈ V ,
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then μ is called an eigenfunction (or eigenvector) of Lp with the eigenvalue μ. The discrete
p-Laplacian, which is the analogue of the p-Laplacian on Riemannian manifolds, has been
investigated by many researchers. In Ref. [4], Takeuchi investigated the spectrum of the p-
Laplacian and the p-harmonic morphism of graphs and proved a Cheeger-type inequality
and a Brooks-type inequality for infinite graphs. In Ref. [3], Amghibech presented several
sharp upper bounds for the largest p-Laplacian eigenvalues of graphs. In Ref. [5], Bühler
and Hein provided a rigorous proof of the approximation of the second eigenvector of p-
Laplacian to the Cheeger cut. In Ref. [6], Luo et al. proposed full eigenvector analysis of
p-Laplacian and obtained a natural global embedding for multi-class clustering problems.
Borba et al. [7] derived many interesting properties for p-Laplacian of a graph.

Note that the signless Laplacian Q = D+A is also a linear operator in R
V such that

(Qf )(v) = ∑
u∼v(f (u) + f (v)). Recently, Borba and Schwerdtfeger [8] investigate the so-

called signless p-Laplacian. For p>1, the signless p-Laplacian is the non-linear operator

Qp : RV → R
V , (Qpf )(v) =

∑
u∼v

sign(f (v) + f (u))|f (v) + f (u)|p−1.

Similarly, a function f is called an eigenfunction (or eigenvector) of Qp with eigenvalue
λ if (Qpf )(v) = λsign(f (v))|f (v)|p−1 for every v ∈ V . The energy functional for signless
p-Laplacian Qp is defined to be

Epf =
∑
uv∈E

|f (u) + f (v)|p

and the lp norm of a function f is ‖f ‖p = (
∑

v |f (v)|p)1/p. The largest eigenvalue of Qp is

λp = sup
f �=0

Epf

‖f ‖pp
= sup

f �=0

∑
uv∈E |f (u) + f (v)|p∑

v∈V |f (v)|p .

In Ref. [8], Borba and Schwerdtfeger gave a Perron–Frobenius type property for λp and
obtained some basic inequalities for λp.

Two distinct edges in graph G are independent if they are not incident with a common
vertex inG. A set of pairwise independent edges inG is called a matching inG. Thematch-
ing number β(G) (or just β , for short) of G is the cardinality of a maximum matching of
G. A perfect matching of G is a matching in which every vertex of G is incident to exactly
one edge of the matching. It is well known that β(G) ≤ n

2 with equality if and only ifG has
a perfect matching. Given a vertex subset S of G, the subgraph induced by S is denoted by
G[S]. Let G1 = (V1,E1) and G2 = (V2,E2) be two disjoint graphs. The union G1 ∪ G2 is
defined to be G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2). The join G1 ∨ G2 of G1 and G2 is obtained
from G1 ∪ G2 by adding all edges between G1 and G2. The components of graph G are
its maximal connected subgraphs. Components of odd (even) order are called odd (even)
components. For more notations in graph theory, we refer the reader to Ref. [1].

Feng et al. [9] investigated the adjacency spectral radius of graphs with a givenmatching
number. Yu [10] investigated the signless Laplacian spectral radius of graphs with given
matching number. Motivated by the above results, we investigate the signless p-Laplacian
spectral radius of graphs with given matching number and generalize Yu’s result in Ref.
[10]. For convenience, we denote by δ(f ) the root of any continuous monotonic function f.
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We shall always assume p and q are conjugate exponents, that is (p − 1)(q − 1) = 1. Now
we state the main result of this paper.

Theorem 1.1: Let Gn,β be the set of graphs on n vertices with matching number β and let
n0 = (2q−1)p−1(β+1)

2 + β. For any G ∈ Gn,β , then the following statements hold.

(i) If n = 2β or n = 2β + 1, then λp(G) ≤ λp(Kn) with equality if and only if G = Kn.
(ii) If 2β + 2 ≤ n < n0, then λp(G) ≤ 2pβ with equality if and only if G = K2β+1 ∪

Kn−2,β−1.
(iii) If n = n0, then λp(G) ≤ 2pβ with equality if and only if G = Kβ ∨ Kn−β or G =

K2β+1 ∪ Kn−2,β−1.
(iv) If n > n0, then λp(G) ≤ δ(g), with equality if and only if G = Kβ ∨ Kn−β , where δ(g)

is the unique root of

g(λ) = λ − 2p−1(β − 1) − (n − β)λ

(λq−1 − βq−1)p−1 = 0.

In the rest of this paper, we will give a proof of Theorem 1.1.

2. The proof of Theorem 1.1

As a start, we need the Perron–Frobenius property for λp.

Lemma 2.1 ([8]): For p>1, let G be a connected graph and f an eigenfunction for λp. Then
λp > 0 and f is either strictly positive, i.e. f (v) > 0 for all v ∈ V(G), or strictly negative.

As usual, the strictly positive one is called the Perron vector of Qp.
Borrowing the idea of Lemma2.7 inRef. [8], we get the following result fromLemma2.1.

Lemma 2.2: For two vertices u, v ∈ V(G), if u �∼ v, then λp(G) < λp(G + uv).

In fact, Borba and Schwerdtfeger got the following bounds for λp in Ref. [8].

Lemma 2.3 ([8]): For p>1, let G = (V ,E) be connected with maximum degree � and
minimum degree δ. Then

2p−1δ ≤ 2p−1 2|E|
|V| ≤ λp(G) ≤ 2p−1�,

with equality holds if and only if G is regular. In particular, the all one vector is an eigenvector
if and only if G is regular.

In what follows, we always assume thatG0 ∈ Gn,β maximizes λp and f is the eigenvector
corresponding to λp. Note that f is the Perron vector only when G0 is connected. Now we
present a property of graphs in Gn,β .

Lemma 2.4 (The Berge Formula, [1]): If G ∈ Gn,β , then there exists a set S on s vertices in
G such that G−S has r = n + s − 2β odd components.
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From Lemma 2.4, we get the following result.

Lemma 2.5: There exist positive odd integers n1, . . . , nr and an integer s satisfying s = r +
2β − n and

∑r
i=1 ni = n − s such that G0 = Ks ∨ (∪r

i=1Kni).

Proof: By Lemma 2.4, there exists a subset S on s vertices in G0 such that G0 − S has r =
n + s − 2β odd components. Let G1,G2, . . . ,Gr be the odd components in G0 − S with
|V(Gi)| = ni ≥ 1 for 1 ≤ i ≤ r, and we may assume that n1 ≤ n2 ≤ · · · ≤ nr. It is clear
that n ≥ s + r = n + 2s − 2β , and thereby s ≤ β . We divide the remaining proof into two
cases to discuss.

Case 1. G0 − S contains no even component.
In this case, we have∪r

i=1V(Gi) = V(G0) − S. It suffices to show thatG0[S] is complete,
Gi is complete for 1 ≤ i ≤ r, and each vertex in S is adjacent to every vertex of Gi for 1 ≤
i ≤ r. In fact, if, for example, G0[S] is not complete, then we could add an edge in G0[S] to
get another graph G′ ∈ Gn,β , and Lemma 2.2 indicates λp(G′) > λp(G0), a contradiction.

Case 2. G0 − S contains an even component.
Let C be the union of these even components. By adding edges to make G[Gr ∪ C]

to be complete, it results in a graph G′ ∈ Gn,β , and Lemma 2.2 implies λp(G) < λp(G̃),
a contradiction. �

Lemma 2.5 gives a rough structure of G0, and now we will say more for the structure of
G0.

Lemma 2.6: There exist integers s and r satisfying r = n + s − 2β and nr = 2β − 2s + 1
such that G0 = Ks ∨ (Knr ∪ Kr−1).

Proof: According to Lemma 2.5, we only need to prove that n1 = n2 = · · · = nr−1 = 1
and nr = 2β − 2s + 1. Recall that f is the eigenvector of Qp(G0) corresponding to λp. We
divide the remaining proof into two cases to discuss.

Case 1. s = 0.
In this case, G0 = ∪r

i=1Kni . We first claim that f (u)f (v) ≥ 0 for any two vertices u, v
in the same component. Otherwise, there exists a vertex set partition V+,V−,V0 of some
V(Kni) such thatV+ = {v ∈ V(Kni) | f (v) > 0},V− = {v ∈ V(Kni) | f (v) < 0} andV0 =
{v ∈ V(Kni) | f (v) = 0}. Let f ′ be the function such that f ′(v) = |f (v)| for v ∈ V(G0). It is
clear that ‖f ′‖p = ‖f ‖p. Since |f (u) + f (v)|p < |f ′(u) + f ′(v)|p for u ∈ V+ and v ∈ V−,
we have Epf < Epf ′ and hence λp = Epf

‖f ‖pp
<

Epf ′

‖f ′‖pp
, a contradiction.

Next, we claim f (u) = f (v) for two vertices u, v in the same component V(Kni). Oth-
erwise, assume that f (u) �= f (v), and we define f ′ by f ′(u) = f ′(v) = (

f (u)p+f (v)p
2 )1/p and

f ′(w) = f (w) for any w �= u, v. Clearly, ‖f ′‖p = ‖f ‖p. By using Jensen’s inequality to
convex function tp, we have

(f (u) + f (v))p < 2p−1(f (u)p + f (v)p) = (f ′(u) + f ′(v))p,

and, for any w ∈ V(Kni) \ {u, v},

(f (u) + f (w))p + (f (v) + f (w))p =
∥∥∥∥f (u) + f (w)

f (v) + f (w)

∥∥∥∥p
p
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=
∥∥∥∥(f (u)f (v)

)
+
(
f (w)

f (w)

)∥∥∥∥p
p

≤
(∥∥∥∥f (u)f (v)

∥∥∥∥
p
+
∥∥∥∥f (w)

f (w)

∥∥∥∥
p

)p

=
(
(f (u)p + f (v)p)

1
p + 2

1
p f (w)

)p
= 2

[(
f (u)p + f (v)p

2

) 1
p

+ f (w)

]p
= (f ′(u) + f ′(w))p + (f ′(v) + f ′(w))p.

Thus, we have

Epf =
∑

ij∈E(G0)

|(f (i) + f (j)|p <
∑

ij∈E(G0)

|f ′(i) + f ′(j)|p = Epf ′,

which leads to λp = Epf
‖f ‖pp

<
Epf ′

‖f ′‖pp
, a contradiction.

Assume that f (vi) = xi for any vi ∈ Kni and 1 ≤ i ≤ r. We have

λp =
∑

i
ni(ni−1)

2 |2xi|p∑
i ni|xi|p

= 2p−1
(∑

i n
2
i |xi|p∑

i ni|xi|p
− 1

)
≤ 2p−1(nr − 1),

where the equality holds if x1 = x2 = · · · = xr−1 = 0. This leads to λp(G0) =
2p−1(nr − 1). This means that if we increase nr by 2 and decrease ni by 2 for 1 ≤ i ≤ r − 1,
the signless p-Laplacian spectral radius will increase; moreover, the resulting graph still
has matching number β . Therefore, n1 = n2 = · · · = nr−1 = 1 and nr = 2β + 1 = 2β −
2s + 1.

Case 2. s �= 0.
In this case, G0 is connected and f is the Perron vector. By the same arguments as those

in Case 1, we may assume f (vi) = xi for any vi ∈ V(Kni) and 1 ≤ i ≤ r, and f (v) = y for
any v ∈ S. From the eigenequations we have{

λpx
p−1
i = (ni − 1)(xi + xi)p−1 + s(xi + y)p−1,

λpyp−1 = (s − 1)(y + y)p−1 +∑r
i=1 ni(xi + y)p−1.

From the first equation, we haveλp = 2p−1(ni − 1) + s(1 + y
xi )

p−1, and thus xi ≤ xjwhen-
ever ni ≤ nj. Hence x1 ≤ x2 ≤ · · · ≤ xr since n1 ≤ n2 ≤ · · · ≤ nr. Ifnr−1 ≥ 3, then denote
by

G′ = Ks ∨ (Knr+2 ∪ Knr−1−2 ∪r−2
i=1 Kni).

It is clear that G′ ∈ Gn,β and G′ could be viewed as the graph obtained from G0 by ‘remov-
ing’ two vertices of Knr−1 to Knr . Without loss of generality, assuming that ‖f ‖p = 1, and
now we have

λp(G′) − λp(G0) ≥ Ep(G′)f − Ep(G0)f

= 2nr(xr−1 + xr)p − 2(nr−1 − 2)(xr−1 + xr−1)
p > 0,

a contradiction. Hence nr−1 ≤ 2. Similarly, we get n1 = n2 = · · · = nr−1 = 1 and nr =
2β − 2s + 1.
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This completes the proof. �

Since 0 ≤ s ≤ β , Lemma 2.6 indicates thatG0 may have β + 1 different choices accord-
ing to the value of s, and we will determine the exact G0 according to the value of s. As
discussed above, if s = 0, then G0 is disconnected; if 1 ≤ s ≤ β , then G0 is connected.
Denote by

H1 = K2β+1 ∪ Kn−2β−1 and H2 = Kβ ∨ Kn−β .

Then λp(H1) = 2pβ . Now, we investigate λp(H2).

Lemma 2.7: The largest signless p-Laplacian eigenvalue λp(H2) is the unique root of

g(λ) = λ − 2p−1(β − 1) − (n − β)λ

(λq−1 − βq−1)p−1 = 0.

In particular, when n = n0 = (2q−1)p−1(β+1)
2 + β, we have λp(H2) = 2pβ. Moreover, if n <

n0, then λp(H2) < 2pβ; if n > n0, then λp(H2) > 2pβ.

Proof: Let f be the Perron vector of λp(H2). By the same arguments as in Lemma 2.6, all
vertices in Kβ or Kn−β have the same eigencomponents, and we assume f (u) = x1 for any
u ∈ Kβ and f (v) = x2 for any v ∈ Kn−β . Then, from the eigenequations, we have⎧⎨⎩λpx

p−1
1 = (β − 1)(x1 + x1)p−1 + (n − β)(x1 + x2)p−1,

λpx
p−1
2 = β(x1 + x2)p−1.

It leads to that

λp − 2p−1(β − 1) − (n − β)λp

(λ
q−1
p − βq−1)p−1

= 0.

Note that the function g(λ) = λ − 2p−1(β − 1) − (n−β)λ

(λq−1−βq−1)p−1 is continuous, its deriva-

tive is g′(λ) = 1 + (n − β)
βq−1

(λq−1−βq−1)p
> 0, limλ→β+ g(λ) = −∞ and limλ→+∞ g(λ) =

+∞. We conclude that λp(H2) is the unique solution of g(λ). Taking n = n0 =
(2q−1)p−1(β+1)

2 + β , we have λp(H2) = 2pβ , and thus λp(H2) < 2pβ if n < n0 and
λp(H2) > 2pβ if n > n0. �

Now we consider the relation between β , n and n0.

Lemma 2.8: If 2β + 2 ≤ n < n0, then λp(G0) ≤ 2pβ with equality if and only if G0 = H1.

Proof: Since λp(H1) = 2pβ , it suffices to prove that λp(G0) < 2pβ when G0 �= H1. From
Lemma 2.6, we have G0 = Ks ∨ (K2β−2s+1 ∪ Kn+s−2β−1). Since G0 �= H1, we have s ≥ 1.
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Assume that f (u) = x1 for any u ∈ Ks, f (v) = x2 for any v ∈ K2β−2s+1 and f (w) = x3 for
any w ∈ Kn+s−2β−1. From the eigenequations we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λpx
p−1
1 = (s − 1)(x1 + x1)p−1 + (2β − 2s + 1)(x1 + x2)p−1

+(n + s − 2β − 1)(x1 + x3)p−1,

λpx
p−1
2 = (2β − 2s)(x2 + x2)p−1 + s(x1 + x2)p−1,

λpx
p−1
3 = s(x1 + x3)p−1.

From the second and the third eigenequation, we have x1
x2 = (

λp−2p(β−s)
s )q−1 − 1 and x1

x3 =
(
λp
s )q−1 − 1. Combining with the first eigenequation we have that

λp = 2p−1(s − 1) + (n + s − 2β − 1)λp
(λ

q−1
p − sq−1)p−1

+ (2β − 2s + 1)[λp − 2p(β − s)]
[(λp − 2p(β − s))q−1 − sq−1]p−1 .

Thus λp(G0) is the solution of

h(λ) = λ − 2p−1(s − 1) − (n + s − 2β − 1)λ
(λq−1 − sq−1)p−1 − (2β − 2s + 1)[λ − 2p(β − s)]

[(λ − 2p(β − s))q−1 − sq−1]p−1 = 0.

One can verify that h(λ) is a continuous and monotonically increasing function on
(2p(β − s) + s,+∞), and h(λ) = 0 has exactly one solution δ(h). Hence λp(G0) = δ(h).

Next, we claim that if n < n0, then h(2pβ) > 0. In fact, bearing in mind that (p − 1)
(q − 1) = 1, we have

h(2pβ) = 2pβ − 2p−1(s − 1) − 2pβ(n + s − 2β − 1)
[2qβq−1 − sq−1]p−1 − 2ps(2β − 2s + 1)

[(2ps)q−1 − sq−1]p−1

= 2p
(

β − s − 1
2

− β(n + s − 2β − 1)
[2qβq−1 − sq−1]p−1 − 2β − 2s + 1

(2q − 1)p−1

)

= 2p
(

β − s − 1
2

− n + s − 2β − 1
(2q − ( s

β
)q−1)p−1 − 2β − 2s + 1

(2q − 1)q−1

)

≥ 2p
(

β − s − 1
2

− n + s − 2β − 1
(2q − 1)p−1 − 2β − 2s + 1

(2q − 1)q−1

)
= 2p

(
β − s − 1

2
− n − s

(2q − 1)p−1

)

> 2p
(

β − s − 1
2

−
(2q−1)p−1

2 (β + 1) + β − s
(2q − 1)p−1

)

= 2p
(

β − s − 1
2

− β + 1
2

− β − s
(2q − 1)p−1

)
= 2p

(
1
2

− 1
(2q − 1)p−1

)
(β − s)

≥ 0,
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where the three inequalities respectively follow from s
β

≤ 1, n < n0 = (2q−1)p−1(β+1)
2 +

β and (2q − 1)p−1 = (2q−1 + 2q−1 − 1)p−1 > (2q−1)p−1 = 2. Hence λp(G0) = δ(h) <

2pβ . �

Lemma 2.9: If n > n0, then λp(G0) ≤ δ(g), where δ(g) is the only solution to g(λ) = λ −
2p−1(β − 1) − (n−β)λ

(λq−1−βq−1)p−1 = 0, with equality if and only if G0 = H2.

Proof: From Lemma 2.7, λp(H2) = δ(g) > 2pβ . Since λp(H1) = 2pβ < λp(H2), we may
assume 1 ≤ s ≤ β , and thereby λp(G0) = δ(h). It suffices to show that δ(h) ≤ δ(g) and the
equality holds only when s = β .

We now consider h(λ) in the interval (2pβ ,+∞). It is obvious that s
λ

≤ s
λ−2p(β−s) ≤

β
λ

< 1 for any λ ∈ (2pβ ,+∞)with the first two equalities hold only when s = β . We claim
h(λ) ≥ g(λ) for any λ ∈ (2pβ ,+∞), with equality holds only when s = β . In fact,

h(λ) = λ − 2p−1(s − 1) − n + s − 2β − 1
(1 − ( s

λ
)q−1)p−1 − 2β − 2s + 1

(1 − ( s
λ−2p(β−s) )

q−1)p−1

≥ λ − 2p−1(s − 1) − n + s − 2β − 1
(1 − (

β
λ
)q−1)p−1

− 2β − 2s + 1
(1 − (

β
λ
)q−1)p−1

= λ − 2p−1(s − 1) − n − s
(1 − (

β
λ
)q−1)p−1

= g(λ) + 2p−1(β − s) − β − s
(1 − (

β
λ
)q−1)p−1

= g(λ) + (β − s)

⎛⎝2p−1 −
(

1
1 − (

β
λ
)q−1

)p−1
⎞⎠

≥ g(λ),

where the last inequality follows from (
β
λ
)q−1 < (2−p)q−1 = 2−q < 1

2 . Hence δ(h) ≤ δ(g)
with equality if and only if s = β . �

Now we are ready to prove Theorem 1.1.

Proof: It is easy to see thatG0 = Kn when n = 2β or n = 2β + 1. Nowwe assume that n ≥
2β + 2. If 2β + 2 ≤ n < n0, then Lemma 2.8 implies that G0 = H1 = K2β+1 ∪ Kn−2β−1.
If n > n0, then Lemma 2.9 implies that G0 = H2 = Kβ ∨ Kn−β . If n = n0, then λp(H1) =
λp(H2) = 2pβ . Moreover, when 1 ≤ s ≤ β − 1, by the same discussion as in Lemma 2.8,
we have that h(2pβ) > 0. It implies that λp(G0) = δ(h) < 2pβ when 1 ≤ s ≤ β − 1. Hence
λp(G0) ≤ 2pβ with equality if and only if G0 = H1 or G0 = H2. �
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