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1. Introduction

We use standard notations from Ref. [1]. Let G be a simple connected graph with vertex set
V and edge set E. For two vertices u, v € V, we write u ~ v if uv € E. For a vertex v € V,
the neighbourhood Ng(v) of v is defined to be Ng(v) = {u € V | u ~ v}, and the cardinal-
ity dg(v) of Ng(v) is called the degree of v, i.e. dg(v) = |[Ng(v)|. As usual, the minimum
degree, the maximum degree and the average degree of G are denoted by §(G), A(G) and
d(G), respectively. The distance dg(u, v) of two vertices u and v is the length of the shortest
path between u and v.

The Laplacian matrix L of G [2] is defined to be L = D—A, where D is the degree
diagonal matrix and A is the adjacency matrix. It is well known that L is a linear operator

L:RY > RY, LHW) =D (Fv) — fw).

A natural generalization of Laplacian operator is p-Laplacian. For p > 1, the p-Laplacian of
G [3] is the non-linear operator

LRV > RY, (L)) =) sign(f() — F@)|f ) — fw)lP ™",

where sign(x) is the sign-function of a number x, which is 1 if x>0, —1 if x <0 and 0
otherwise. If f € RV and p e R satisfy (L,f)(v) = usign(f(v)|f (v) [P~ for every v € V,
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then w is called an eigenfunction (or eigenvector) of L, with the eigenvalue (1. The discrete
p-Laplacian, which is the analogue of the p-Laplacian on Riemannian manifolds, has been
investigated by many researchers. In Ref. [4], Takeuchi investigated the spectrum of the p-
Laplacian and the p-harmonic morphism of graphs and proved a Cheeger-type inequality
and a Brooks-type inequality for infinite graphs. In Ref. 3], Amghibech presented several
sharp upper bounds for the largest p-Laplacian eigenvalues of graphs. In Ref. [5], Bithler
and Hein provided a rigorous proof of the approximation of the second eigenvector of p-
Laplacian to the Cheeger cut. In Ref. [6], Luo et al. proposed full eigenvector analysis of
p-Laplacian and obtained a natural global embedding for multi-class clustering problems.
Borba et al. [7] derived many interesting properties for p-Laplacian of a graph.

Note that the signless Laplacian Q = D+ A is also a linear operator in R" such that
QNH (W) =, (f(u) + f(v)). Recently, Borba and Schwerdtfeger [8] investigate the so-
called signless p-Laplacian. For p > 1, the signless p-Laplacian is the non-linear operator

Q RV > RY, (QfNH(v) =) sign(f(») +f@)f ) + fw) P,

Similarly, a function f is called an eigenfunction (or eigenvector) of Q, with eigenvalue
A if (Qpf) (v) = Asign(f () |f (v) |P~1 for every v € V. The energy functional for signless
p-Laplacian Qp is defined to be

Epf = Y [fw) +f0)IF

uveE

and the I’ norm of a function f is ||fIl, = Q_, [f(v) [P)1/P. The largest eigenvalue of Qpis

Epf ZMVEE lf(u) +f(V) |p
Ap = = — )
s ST S ST

In Ref. [8], Borba and Schwerdtfeger gave a Perron-Frobenius type property for A, and
obtained some basic inequalities for A,.

Two distinct edges in graph G are independent if they are not incident with a common
vertex in G. A set of pairwise independent edges in G is called a matching in G. The match-
ing number B(G) (or just B, for short) of G is the cardinality of a maximum matching of
G. A perfect matching of G is a matching in which every vertex of G is incident to exactly
one edge of the matching. It is well known that 8(G) < 5 with equality if and only if G has
a perfect matching. Given a vertex subset S of G, the subgraph induced by S is denoted by
G[S]. Let G; = (V1,E;) and G, = (V>, Ez) be two disjoint graphs. The union Gy U G; is
defined to be G; U G, = (V1 U V), E; U Ey). The join Gy V Gy of G; and Gj is obtained
from G; U G, by adding all edges between G; and G,. The components of graph G are
its maximal connected subgraphs. Components of odd (even) order are called odd (even)
components. For more notations in graph theory, we refer the reader to Ref. [1].

Fengetal. [9] investigated the adjacency spectral radius of graphs with a given matching
number. Yu [10] investigated the signless Laplacian spectral radius of graphs with given
matching number. Motivated by the above results, we investigate the signless p-Laplacian
spectral radius of graphs with given matching number and generalize Yu’s result in Ref.
[10]. For convenience, we denote by § (f) the root of any continuous monotonic function f.
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We shall always assume p and g are conjugate exponents, that is (p — 1)(q — 1) = 1. Now
we state the main result of this paper.

Theorem 1.1: Let G, g be the set of graphs on n vertices with matching number B and let
np = w + B. For any G € G, g, then the following statements hold.

(i) Ifn=2Born=28+1, then 1,(G) < A,(K,) with equality if and only if G = K,,.

(ii) If 2B 42 < n < ng, then Ap(G) < 2PB with equality if and only if G = Kygy1 U
Ky—2,5-1.

(iii) If n = ng, then Ay(G) < 2PB with equality if and only if G=Kg Vv K,_g or G =
Kap+1 U Ky—2,-1.

(iv) Ifn > no, then Ap(G) < 8(g), with equality if and only if G = Kg V K, g, where 5(g)
is the unique root of

(n—B)r

= -1 =
g =r-2"1B—1) - G T g1y 1 = ©

In the rest of this paper, we will give a proof of Theorem 1.1.

2. The proof of Theorem 1.1
As a start, we need the Perron-Frobenius property for A.

Lemma 2.1 ([8]): Forp> 1, let G be a connected graph and f an eigenfunction for Ap. Then
Ap > 0 and f is either strictly positive, i.e. f(v) > 0 for allv € V(G), or strictly negative.

As usual, the strictly positive one is called the Perron vector of Qp.
Borrowing the idea of Lemma 2.7 in Ref. [8], we get the following result from Lemma 2.1.

Lemma 2.2: For two vertices u,v € V(G), if u 7 v, then Ap(G) < Ap(G + uv).
In fact, Borba and Schwerdtfeger got the following bounds for A, in Ref. [8].

Lemma 2.3 ([8]): For p> 1, let G = (V,E) be connected with maximum degree A and
minimum degree . Then
2|E
2P71s < 21’—1% < 1p(G) < 2P71A,
with equality holds if and only if G is regular. In particular, the all one vector is an eigenvector
if and only if G is regular.

In what follows, we always assume that Gy € G, g maximizes A, and f is the eigenvector
corresponding to A,. Note that f is the Perron vector only when Gy is connected. Now we
present a property of graphs in G, g.

Lemma 2.4 (The Berge Formula, [1]): IfG € G, g, then there exists a set S on s vertices in
G such that G—S hasr = n+ s — 28 odd components.
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From Lemma 2.4, we get the following result.

Lemma 2.5: There exist positive odd integers ni, . . ., n, and an integer s satisfyings = r +
2B —nand ) ;_, nj = n — ssuch that Go = K v (Ul_,Ky,).

Proof: By Lemma 2.4, there exists a subset S on s vertices in Gy such that Gy — Shas r =
n+ s — 2B odd components. Let Gy, Gy, ..., G, be the odd components in Gy — S with
[V(Gj)| = n; > 1 for 1 <i<r, and we may assume that n; < ny <-.- < n,. Itis clear
thatn > s 4+ r = n 4 2s — 2, and thereby s < 8. We divide the remaining proof into two
cases to discuss.

Case 1. Gp — S contains no even component.

In this case, we have U_, V(G;) = V(Gy) — S. It suffices to show that Gy [S] is complete,
Gj is complete for 1 < i < r, and each vertex in S is adjacent to every vertex of G; for 1 <
i < r.In fact, if, for example, Go[S] is not complete, then we could add an edge in Go[S] to
get another graph G’ € G, g, and Lemma 2.2 indicates AP(G/ ) > Ap(Go), a contradiction.

Case 2. Gy — S contains an even component.

Let C be the union of these even components. By adding edges to make G[G, U C]
to be complete, it results in a graph G’ € G, g, and Lemma 2.2 implies 1,(G) < xp('é),
a contradiction. |

Lemma 2.5 gives a rough structure of Gy, and now we will say more for the structure of
Go.

Lemma 2.6: There exist integers s and r satisfyingr =n+s—2p andn, =2 —2s+1
such that Gy = K; v (K, U Kr—1).

Proof: According to Lemma 2.5, we only need to prove that n; =ny=---=n,_; =1
and n, = 28 — 25 + 1. Recall that f is the eigenvector of Q,(Go) corresponding to A,. We
divide the remaining proof into two cases to discuss.

Casel.s = 0.

In this case, Go = Uj_,K,,. We first claim that f(u)f (v) > 0 for any two vertices u, v
in the same component. Otherwise, there exists a vertex set partition V*, V=, V? of some
V(Ky,) suchthat VT = {v € V(Ky,) | f(v) > 0}, V™ = {v € V(Ky,) | f(v) < 0}and V° =
{ve V(Ky,) | f(v) = 0}. Let f’ be the function such that f'(v) = |f(v)| for v € V(Gp). It is
clear that ||f'[l, = [Iflly. Since [f(w) +fWMIP < |f'(w) +f (WP forue VT andve V™,
we have Eyf < Epf’ and hence 1, = ”%{; < \E[f!%ll’ a contradiction.

Next, we claim f(u) = f(v) for two \fertices 15, v in the same component V(K,,). Oth-
erwise, assume that f(u) # f(v), and we define f" by f'(u) = f'(v) = (f(u)pz;f(v)p)l/‘” and
f'(w) =f(w) for any w % u,v. Clearly, ||f'|l, = fll,- By using Jensen’s inequality to
convex function t?, we have

F@ +fW)P < 227 FWP + f)P) = (f () + f W)F,
and, for any w € V(Ky,;) \ {u, v},
P

f(u) + f(w)

p p =
F@) +fw)" + (f0) +f(w) ‘f(v) +fw)

p
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P

g R (e
= (P +FwP)? + 255w =2 [(f(’“‘)l)zﬂ)? +f(W)T

= (') +f WP + (f' ) +f ).

f(w)
f(w)

-

Thus, we have

Ef= ) IGO+fOF < 3 IfO+fGF =Ef,

ii€E(Go) ij€E(Go)
. E E,f' .
which leads to Ap = LJ; < "—f, a contradiction.
Ifllp 11l

Assume that f(v;) = x; forany v; € K,,, and 1 < i < r. We have

D e e Lo TP (zinﬂxiv’

> i nilxil? >nilxl?

where the equality holds if x; =x;=---=x,1=0. This leads to A,(Go) =
2P=1(n, — 1). This means that if we increase , by 2 and decrease n;by 2for1 <i<r—1,
the signless p-Laplacian spectral radius will increase; moreover, the resulting graph still
has matching number 8. Therefore,n; =ny =---=n,_; =landn, =2 +1=28 —
2s+ 1.

Case 2.5 # 0.

In this case, Gy is connected and f is the Perron vector. By the same arguments as those
in Case 1, we may assume f(v;) = x; for any v; € V(Kj,;) and 1 < i <r, and f(v) = y for
any v € S. From the eigenequations we have

hp = 1) <27'n -1,

I ™ = i = D+ )P s+
A7 == DO+ T mi )P
From the first equation, we have A, = 2271 (n; — 1) + s(1 + %)P—l,and thus x; < xj when-

evern; < nj.Hencexl <xp <---<xssincen; <mnp <---<mn..Ifn,_; > 3,thendenote

by
G =KV (Ky42 UKy, |2 UZZKy).

It is clear that G’ € G, 3 and G’ could be viewed as the graph obtained from Gy by ‘remov-
ing’ two vertices of K, _, to Kj,,. Without loss of generality, assuming that |||, = 1, and
now we have

Ap(G)) — Ap(Go) = Ep(G)f — Ep(Go)f
=2n,(x,—1 + xr)p —2(n—1 —2) (1 + xr—l)p > 0,

a contradiction. Hence n,_; < 2. Similarly, we get n; =ny =---=n,_1 =1 and n, =
28 — 25+ 1.
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This completes the proof. u

Since 0 < s < B, Lemma 2.6 indicates that Gy may have g + 1 different choices accord-
ing to the value of s, and we will determine the exact Gy according to the value of s. As
discussed above, if s = 0, then Gy is disconnected; if 1 < s < 8, then Gy is connected.
Denote by

H, = K2,B+l UKn_zﬁ_l and H, = Kﬂ \Y Kn_ﬂ.

Then A,(H;) = 2P 8. Now, we investigate A, (Hy).

Lemma 2.7: The largest signless p-Laplacian eigenvalue A, (Hy) is the unique root of

(n—p)r

TGa g

g =1 =21 —1)

In particular, when n = ny = w + B, we have A,(Hp) = 2P B. Moreover, if n <
no, then Ay(Ha) < 2P B; if n > no, then Ap(Hy) > 2Fp.

Proof: Let f be the Perron vector of A,(H>). By the same arguments as in Lemma 2.6, all
vertices in Kg or K,,_g have the same eigencomponents, and we assume f (#) = x; for any
u € Kg and f(v) = x;, for any v € K,,_g. Then, from the eigenequations, we have

2o T = (B = D@1 +x)P T+ (n— B)(x1 + )P,
= Bla + )P

It leads to that
— BA
=227 B 1) — q_(ln P _
(" - pa-typ-t

Note that the function g(A) = 1 — 2071 —1) — Wi"__ﬁ% is continuous, its deriva-

.. q-1 . .

tiveisg' (M) =1+ (n — ’B)W’lﬂ—w > 0, limy_, g+ g(A) = —oo and limy 400 g(A) =
+0o. We conclude that A,(H;) is the unique solution of g(A). Taking n =ny =
%—Fﬁ, we have A,(Hz) =2PB, and thus A,(Hy) <2PB if n <ng and

Ap(Hp) > 2PBif n > ny. [ |
Now we consider the relation between 8, n and ny.

Lemma 2.8: If2f + 2 < n < nq, then Ay(Go) < 2P B with equality if and only if Go = H.

Proof: Since A,(H1) = 2P, it suffices to prove that A,(Go) < 278 when Go # H;. From
Lemma 2.6, we have Go = K, V (Kzp—251 U Kyyys—28-1). Since Go # Hy, we have s > 1.
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Assume that f (1) = x; for any u € K, f(v) = x, for any v € Kyg_2s11 and f(w) = x3 for
any w € K, 4s_24—1. From the eigenequations we have

kpx‘f_l =(G6—DE +x)P 1+ Q2B =25+ 1)(x1 +x)P 7!

+(n+s—28— 1) +x3)P7,

-1

Ap = (28 — 25)(x2 + x)P 7! +s(x1 +x2)P 7,

X
)‘ng_l = s(x; +x3)P 7L
()‘P —2P(B— s))

From the second and the third eigenequation, we have .

—land 2 =
x3
(—);P )41 — 1. Combining with the first eigenequation we have that

(n+s—28—Dx, (2B —2s+1D[r, —2°(B —9)]

— op—1(e _
A.p =2 (S ) ()\.q 1 _ I)P 1 [()\p _ 21’(,8 _ 5))q71 _ Sqfl]pfl

Thus 4,(Go) is the solution of

- (n+s—2—Di (2B —2s+ DA —27(B —9)]
— 9 ol 1y _ _ —
h()\) =A—=2 (s—1) ()\q—l _ Sq—l)p—l [()\ _ Zp(ﬂ _ S))q—l _ sq_l]P—l =0.

One can verify that h(A) is a continuous and monotonically increasing function on
(2P(B —s) + s, +00), and h(1) = 0 has exactly one solution §(h). Hence Ap(Go) = 8(h).

Next, we claim that if n < ng, then h(2°8) > 0. In fact, bearing in mind that (p — 1)
(g — 1) = 1, we have

2B(n+s—2B8-—1) 2Ps(2B —2s+1)
[244-1 — sa—1]p—1  [(2p5)4—1 — sa—1]p—1

o s—1 Bn+s—28—1) 2 —2s+1
=2 (ﬂ" 2 pqﬁql-ﬂlwl'_(zq—-npl>

h@Pp) =2 -2 —1) -

_ o0 s—1 n+s—28—1 2 —2s+1
F== S @I— (Tl @it
) s—1 n+4+s—-28—-1 28—-2s+1
22\~ 1 —1P-1 (24— 1)a!
s—1 n—s
:y@_z _m—m1>
s—1 et (B+D+p=s
s—1 pB+1 B—s
:y<ﬁ_ 2 2 _cmﬁv*>
_2P<l_;)(ﬂ_s)
N 2 (29 —1)p!
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—1
where the three inequalities respectively follow from % <lLn<mn = w +

B and (21— 1Pt =071 +2071 — 1)1 > (297 HP~! = 2. Hence A,(Go) = 8(h) <

2PB. |
Lemma 2.9: Ifn > ny, tizen Ap(Go) < 8(g), where 5(g) is the only solution to g(A) = A —
2718 —1) — (M*Yl—iﬁ% = 0, with equality if and only if Gy = H,.

Proof: From Lemma 2.7, A,(H>) = 8(g) > 2PB. Since A,(H1) = 2/ B < Ap(H3), we may
assume 1 < s < f8,and thereby A,(Go) = §(h). It suffices to show that §(h) < 6(g) and the
equality holds only when s = g.

We now consider h(1) in the interval (28, +00). It is obvious that 3 < A—zP;(ﬂ—s) <

g < 1forany A € (2P B, 4+00) with the first two equalities hold only when s = B. We claim

h(x) > g(1) for any A € (2P B, +00), with equality holds only when s = . In fact,

HOD = 3 — 2P _l_n—l-s—Zﬁ—l_ 28 —2s+1
() (s ) (1— (%)q—l)p—l a- (A—ZPS(ﬂ—s) yq—1yp—1
ZA—ZP_I(S—I)—TH_S_Zﬁ_l _ 2 —2s+1
(1=t a— Dty
a2y - — T8
A=2"(s— 1) RIS
B —s

— =g _¢o_ = =
g +2271 (B —s) = By

p—1
—e (B9 |2 - (%)

Pt
> g(A)s

where the last inequality follows from (%)‘1_1 < (277471 =279 < 1 Hence §(h) < 5(g)
with equality if and only if s = . |

Now we are ready to prove Theorem 1.1.

Proof: ltis easy to see that Gy = K, whenn = 28 orn = 28 4+ 1. Now we assume that n >
2B+ 2.1f28 + 2 < n < ng, then Lemma 2.8 implies that Gy = H; = Kyg4+1 U K,—25-1.
If n > ng, then Lemma 2.9 implies that Go = H, = Kg Vv m If n = no, then A, (H;) =
Ap(Hp) = 2PB. Moreover, when 1 < s < B — 1, by the same discussion as in Lemma 2.8,
we have that h(2f 8) > 0.Itimplies that 1,(Go) = 8(h) < 2’Bwhen1 <s < B — 1. Hence
Ap(Go) < 2P B with equality if and only if Gy = Hy or Gy = H). [ |
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