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The classical problem of characterizing the graphs whose eigenvalues lie in a given interval 
may date back to the work of J.H. Smith in 1970. Especially, the research on graphs with 
smallest eigenvalues not less than −2 has attracted widespread attention. Mixed graphs are 
natural generalizations of undirected graphs. In this paper, we completely characterize the 
mixed graphs with smallest Hermitian eigenvalue greater than −

√
5+1
2 . In fact, we found 

three infinite classes of mixed graphs and 30 scattered mixed graphs.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

It is a classical problem in Spectral Graph Theory to characterize the graphs whose eigenvalues lie in a given interval. 
The research of such problems may date back to the work of Smith in 1970 [18]. This work stimulated the interest of 
researchers. There are a lot of results in the literature concerning the topic. In 1972, Hoffman [11] obtained all limit points 
of the spectral radius of nonnegative symmetric matrices smaller than 

√
5+1
2 . In 1982, Cvetković et al. [5] characterized the 

graphs whose spectral radius does not exceed 
√

2 + √
5, in 1989, Brouwer and Neumaier [4] determined the graphs with 

spectral radius between 2 and 
√

2 + √
5 and later, Woo and Neumaier [27] described the structure of graphs whose spectral 

radii are bounded above by 3
√

2/2. For the (signless) Laplacian matrices, Wang et al. [21,22] characterized the graphs whose 
spectral radii do not exceed 4.5. With respect to the smallest eigenvalues, Hoffman [12] investigated the graphs whose 
smallest eigenvalue exceeds −1 − √

2, and this work was continued by Taniguchi et al. [19,20,14]. Furthermore, Munemasa 
et al. [16] showed that all fat Hoffman graphs with smallest eigenvalue at least −

√
5+1
2 (which is just −1 − τ where τ is 

the golden ratio) can be described by a finite set of fat (−1 − τ )-irreducible Hoffman graphs. Especially, the graphs with 
smallest eigenvalue −2 attracted a lot of attention, and we refer the reader to the survey [7] and the book [6]. Recently, 
Abdollahi et al. [1] classified all distance-regular Cayley graphs with least eigenvalue −2 and diameter at most three, and 
Koolen et al. [13] proved that a connected graph with smallest eigenvalue at least −3 and large enough minimal degree is 
2-integrable. For the anti-adjacency matrices, Wang et al. [23,24] determined the graphs whose smallest eigenvalues are at 
least −2

√
2. In this paper, we consider the smallest Hermitian eigenvalue of a mixed graph.

A mixed graph is defined to be an ordered triple (V , E, A), where V is the vertex set, E is the undirected edge set and A
is the directed edge set. Note that, if both uv and vu are directed edges, then we regard {u, v} as an undirected edge. Thus, 
if (u, v) ∈ A then (v, u) /∈ A. Clearly, if A = ∅ then the mixed graph turns to be a graph and if E = ∅ then the mixed graph 
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turns to be an oriented graph. For convenience, we write u ↔ v if {u, v} ∈ E and u → v is (u, v) ∈ A. Let M = (V , E, A) be 
a mixed graph with V = {v1, v2, . . . , vn}. The underlying graph �(M) is a graph with vertex set V and two vertices u ∼ v if 
u ↔ v or u → v or v → u. For U ⊆ V and W ⊆ V \ U , denote by NW (U ) = {w | w ∈ W , u ∼ w in �(M) for some u ∈ U }. 
Especially, if U = {u} then NW (u) is the set of neighbors of u in W . Moreover, denote by N+

W (u) = {w | u → w}, N−
W (u) =

{w | u ← w} and No
W (u) = {w | u ↔ w}. It is clear that NW (u) = N+

W (u) ∪ N−
W (u) ∪ No

W (u). As usual, we always write Pn , Cn , 
Kn1,n2,...,nk to denote the path, the cycle, and the complete multipartite graph of the corresponding orders. For two graphs 
G and H , the union G ∪ H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join G∇H is the graph 
obtained from G ∪ H by adding all edges between G and H . The distance dG(u, v) of two vertices u, v ∈ V (G) is the length 
of a shortest path from u to v in G . The diameter of G is the largest distance in G , denoted by d(G). All other notations not 
mentioned here are standard and can be found in [8].

We always write MG for M when the underlying graph �(M) = G . Moreover, for a graph G , denote by MG the set 
of mixed graphs with underlying graph G . If MG = G then we write G for MG . The mixed graph MG is connected if G is 
connected and we always consider connected mixed graphs in this paper. The diameter of MG is defined to be the diameter 
of G , denoted by d(MG ). For a subset U ⊆ V , the mixed subgraph induced by U is the mixed graph MG [U ] = (U , E ′, A′) with 
E ′ = {{u, v} | u, v ∈ U , {u, v} ∈ E} and A′ = {(u, v) | u, v ∈ U , (u, v) ∈ A}. As usual, for a vertex v , the (mixed) graph G − v
(resp. MG − v) is the induced (resp. mixed) subgraph obtained from G (resp. MG ) by deleting the vertex v and associated 
edges. The Hermitian matrix of MG is defined to be a square matrix H(MG ) = [hst]n×n with

hst =

⎧⎪⎪⎨
⎪⎪⎩

1, vs ↔ vt,

i, vs → vt,

−i, vt → vs,

0, otherwise,

where i = √−1. This matrix was proposed by Liu and Li [15] and Guo and Mohar [9] independently. Since H(MG) is 
a Hermitian matrix, all eigenvalues of H(MG) are real and listed as λ1 ≥ λ2 ≥ · · · ≥ λn = λmin. The collection of such 
eigenvalues is the spectrum of H(MG). The Hermitian spectrum of the mixed graph MG is just the spectrum of H(MG), 
denoted by Sp(MG ). Two mixed graphs MG , M ′

G ∈ MG are switching equivalent if there exists a diagonal matrix D whose 
entries belong to {±1, ±i} such that H(M ′

G ) = D H(MG)D∗ . It is clear that switching equivalence is an equivalence relation. 
Thus, denote by [MG ] the equivalence class containing MG with respect to switching equivalence. Obviously, all graphs in 
[MG ] share the same spectrum. Recently, Wissing and Dam [26] determined all mixed graphs with exactly one negative 
eigenvalue. Guo and Mohar [10] determined all mixed graphs with λ1 < 2 and Yuan et al. [28] characterized all mixed 
graphs with λ1 ≤ 2 when G contains no cycles of length 4.

In this paper, we completely determine the connected mixed graphs with smallest Hermitian eigenvalue greater than 
−

√
5+1
2 . In fact, we found three infinite classes of mixed graphs and 30 scattered mixed graphs (see Theorem 5).

2. Preliminaries

We first present the famous interlacing theorem with respect to Hermitian matrices.

Lemma 1 ([3]). Let the matrix S of size n × m be such that S∗S = Im and let H be a Hermitian matrix of size n with eigenvalues 
λ1 ≥ λ2 ≥ · · · ≥ λmin . Set B = S∗H S and let μ1 ≥ μ2 ≥ · · · ≥ μm be the eigenvalues of B. Then the eigenvalues μi interlace the 
eigenvalues λ j , that is, λi ≥ μi ≥ λn−m+i for i = 1, 2, ..., m.

The following result is immediate from Lemma 1.

Corollary 1. Let MG be a mixed graph with underlying graph G. If MH is a mixed induced subgraph of MG , then the eigenvalues of MH

interlace those of MG .

Next, we introduce another powerful tool in Spectral graph theory: the equitable partition. Let MG be a mixed graph on 
n vertices with underlying graph G . Let π : V (G) = V 1 ∪ V 2 ∪ · · · ∪ V s be a partition of V (G) with |V i | = ni and n = n1 +
n2 + · · · + ns . For 1 ≤ i, j ≤ s, denote by Hij the submatrix of H(MG ) whose rows correspond to V i and columns correspond 
to V j . Therefore, the Hermitian matrix H(MG) can be written as H(MG) = [Hij]. Denote by bij = 1T Hij1/ni the average 
row-sums of Hij , where 1 denotes the all-one vector. The matrix Hπ = (bij)s×s is called the quotient matrix of H(MG ). If, for 
any i, j, the row-sum of Hij corresponding to any vertex v ∈ V i equals to bij , then π is called an equitable partition of MG . 
Let δV i be a vector indexed by V (G) such that δV i (v) = 1 if v ∈ V i and 0 otherwise. The matrix P = [δV 1δV 2 · · · δV s ] is called 
the characteristic matrix of π . If π is an equitable partition, then H(MG )P = P Hπ . It leads to the following famous result.

Lemma 2 ([8, Theorem 9.3.3, page 197]). Let MG be a mixed graph and π an equitable partition of MG with quotient matrix Hπ and 
characteristic matrix P . Then the eigenvalues of Hπ are also eigenvalues of H(MG). Furthermore, H(MG) has the following two kinds 
of eigenvectors:
2
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(i) the eigenvectors in the column space of P , and the corresponding eigenvalues coincide with the eigenvalues of Hπ ;
(ii) the eigenvectors orthogonal to the columns of P , i.e., those eigenvectors sum to zero on each cell of π .

Let H be a set of graphs. A graph G is called H-free if no induced subgraphs of G are in H. If H = {H} then an H-free 
graph G is also called an H-free graph. Recall that a P4-free graph is called a cograph. The following result reveals the 
structure of cographs.

Lemma 3 ([17]). If G is a connected P4-free graph, then G is the join of two graphs, that is, G = G1∇G2 for some graphs G1 and G2
with |V (G1)|, |V (G2)| ≥ 1.

We determine two types of H-free graphs when H contains some simple graphs.

Lemma 4. If G is a {P3, 3K1, K2 ∪ K1}-free graph then G ∈ {2K1, Kn | n ≥ 1}; if G is a {P3, 3K1, K3}-free graph then G ∈
{K1, K2, 2K1, 2K2, K1 ∪ K2}.

Proof. It is clear that, if a graph G is P3,3K1-free, then it is the union of at most two complete graphs. Thus, we have 
G ∈ {2K1, Kn | n ≥ 1} if G is additional K2 ∪ K1-free, and G ∈ {K1, K2, 2K1, 2K2, K2 ∪ K1, K2 ∪ K2} if G is additional K3-
free. �

Guo and Mohar introduced the so-called four-way switching to generate switching equivalent graphs [9]. A four-way 
switching is the operation of changing a mixed graph MG into the mixed graph M ′

G by choosing an appropriate diagonal 
matrix S with S jj ∈ {±1, ±i} and setting H(M ′

G ) = S−1 H(MG)S . Let G be a graph and X an edge cut such that G − X =
G1 ∪ G2 and V 1 = V (G1) and V 2 = V (G2). For a mixed graph MG = (V , E, A), define X+ = {(v1, v2) | {v1, v2} ∈ X, v1 ∈
V 1, v2 ∈ V 2} and X− = {(v2, v1) | {v1, v2} ∈ X, v1 ∈ V 1, v2 ∈ V 2}. The cut X is called a coincident cut of the mixed graph 
MG if X+ ⊆ A or X− ⊆ A or X ⊆ E . If X is a coincident cut of MG , then the X-switching of MG is the mixed graph 
MG [X] = (V , E ′, A′) with E ′ = E ∪ X and A′ = A \ (X+ ∪ X−). Note that MG [X] = MG if X ⊆ E . From four-way switching, 
the following results are obtained.

Lemma 5 ([9]). Let MG be a mixed graph. If X is a coincident cut of MG , then MG and MG [X] are switching equivalent and thus 
Sp(MG) = Sp(MG [X]).

If G is a forest, then each edge is a cut. Moreover, each edge is a coincident cut of any mixed graph MG . Thus, Lemma 5
implies the following result.

Corollary 2 ([9]). If G is a forest, then Sp(MG) = Sp(G) for any mixed graph MG ∈MG .

Note that mixed graphs could be viewed as the so-called gain graphs. Let T4 = {±1, ±i} be the group of the fourth 
roots of unity. For an undirected graph G with vertex set V and edge set E , the T4-gain graph is a triple � = (G, T4, ϕ)

consisting the underlying graph G , the gain group T4 and a map ϕ: �E → T4 such that ϕ((u, v)) = ϕ((v, u))−1 called the 
gain function. The mixed graphs are just the T4-gain graphs with ϕ(�E) ∈ {1, ±i}. For a mixed graph MG with Hermitian 
matrix H = [huv ]n×n , let C = v1 v2 · · · vs be a cycle in G , denote by hMG (C) = hv1 v2 hv2 v3 · · ·hvs v1 . Moreover, if hMG (C) = 1
then we say C is positive. In [2], the authors investigated T4-gain graphs, and from Propositions 1 and 2 in [2], we get the 
following useful result, which is also obtained by Wang and Yuan [25].

Lemma 6 ([2,25]). Let MG and M ′
G be two mixed graphs sharing the same underlying graph G. If every induced cycle C in G is positive, 

then MG ∈ [G].

3. Mixed graphs with λmin > −
√

5+1
2

In this part, we first investigate the mixed triangles in mixed graphs whose underlying graph is a complete graph. Next, 
we get all mixed graphs with smallest eigenvalue not less than −√

2. At last, we completely determine the mixed graphs 
with smallest eigenvalue greater than −

√
5+1
2 ≈ −1.618.

It is easy to verify that there are seven types of mixed triangles and fourteen types of mixed quadrangles, and we present 
them in Fig. 1 together with their smallest eigenvalues. The following results are immediate from Lemma 1 and Fig. 1.

Lemma 7. Let MG be a mixed graph with smallest eigenvalue λmin. If λmin > −√
3, then any mixed triangle in MG belongs to 

{K3, K 2,2
3 , K 2,3

3 }.

Lemma 8. Let MG be a mixed graph with smallest eigenvalue λmin. If λmin ≥ −1.84, then any induced mixed quadrangle in MG
belongs to {C1, C2, C3}.
4 4 4

3
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Fig. 1. The mixed triangles and quadrangles together with their smallest eigenvalues, where K3, K 2,2
3 , K 3,2

3 are switching equivalent and K3,1, K 3,2
3 are 

switching equivalent. The first to the sixth graphs on the last row are switching equivalent.

In what follows, we always denote C3 = {K3, K 2,2
3 , K 2,3

3 } and C4 = {C1
4, C2

4, C3
4}. The mixed triangles K3, K 2,2

3 and K 2,3
3

play an important role in determining the orientations of a mixed graph, especially when all induced cycles (if exist) of the 
underlying graph are triangles. Recall that a chordal graph is one in which all cycles of four or more vertices have a chord, 
which is an edge that is not part of the cycle but connects two vertices of the cycle. The following result characterizes a 
class of mixed chordal graphs switching equivalent to their underlying graphs.

Theorem 1. Let G be a chordal graph. If MG is a mixed graph in which each mixed triangle belongs to C3, then MG ∈ [G], i.e., MG is 
switching equivalent to G.

Proof. Without loss of generality, assume that G is connected. According to Lemma 5, it suffices to show that MG has a 
coincident cut X such that V (G − X) = U ∪ W satisfying that all edges in U and W are undirected.

We prove the statement by induction on n = |V (G)|. The statement holds for n = 3 clearly. Assume that the statement 
holds for n − 1 with n ≥ 4 and we prove it holds for n. It is well-known that a chordal graph has a perfect elimination 
ordering, which is an ordering of the vertices such that, for each vertex v , the vertex v and the neighbors of v that occur 
after v in the order form a clique. Assume that {v1, v2, . . . , vn} is a perfect ordering. By the inductive hypothesis, MG − v1
has a coincident cut X , say V (G − v1) = U ∪ W such that the edges in U and W are undirected. According to the definition 
of X , we have either all edges between U and W are undirected or they have the same direction. Therefore, we divide two 
cases to discuss.

Case 1. All edges between U and W are undirected.
For any u ∈ NU (v1) and w ∈ NW (v1), since v1, u, w form a clique and MG [v1, uw ] ∈ C3, we have either v1 ↔ u, w , 

v1 → u, w or u, w → v1. If the first case occurs, then there is nothing to prove. If the second one occurs, then, for any 
u′ ∈ NU (v1), we have v → u′ since v1, u, u′ form a clique and MG [v1, u, u′] ∈ C3. Similarly, we have v1 → w ′ for any 
w ′ ∈ NW (v1). Therefore, all edges between v1 and U ∪ W form the desired coincident cut. If the last one occurs, one can 
similarly verify that all edges between v1 and U ∪ W form the desired coincident cut.

Case 2. All edges between U and W have the same direction, say u → v for any u ∈ U and w ∈ W with u ∼ v in G .
For any u ∈ NU (v1) and w ∈ NW (v1), since v1, u, w form a clique and MG [v1, u, w] ∈ C3, we have either v1 ↔ u and 

v1 → w , or u → v1 and v1 → w . If the former occurs, then, for any u′ ∈ NU (v1), we have v1 ↔ u′ since v1, u, u′ form a 
clique and MG [v1, u, u′] ∈ C3. Similarly, we have v1 → w ′ for any w ′ ∈ NW (v1). Therefore, all edges between {v1} ∪ U and 
W form the desired coincident cut. If the latter occurs, one can similarly verify that all edges between U and {v1} ∪ W
form the desired coincident cut.

The proof is completed. �

4



L. Lu, Z. Lou and Q. Huang Discrete Mathematics 345 (2022) 112939
Remark 1. We prove Theorem 1 by investigating the structure of chordal graphs, and omit any reference to the spectral 
theory of complex unit gain graphs. In fact, Theorem 1, as well as Corollary 2, is immediate from Lemma 6 since all induced 
cycles of a chordal graph are triangles and all of the triangles are in C3 which are positive.

For nonnegative integers s, t, n with n = s + t , denote by Kn[s, t] the mixed graph obtained from Ks ∪ Kt by adding all 
arcs from the vertices of Ks to those of Kt . We may assume that Kn[n, 0] = Kn[0, n] = Kn . From Theorem 1 it immediately 
follows that Kn[s, t] is switching equivalent to Kn . In fact, we will show that [Kn] = {Kn[s, t] | s, t ≥ 0, s + t = n} and give a 
characterization of the graph set [Kn].

Lemma 9. Let MKn be a mixed graph on n ≥ 3 vertices in which any mixed triangle belongs to C3. If MKn contains K 2,2
3 , then MKn ∈

{Kn[s, t] | s ≥ 2, t ≥ 1, s + t = n}.

Proof. Assume that u, v, w ∈ V (MKn ) induce a K 2,2
3 with u → w , v → w and u ↔ v . For any vertex x ∈ V (MKn ) \ {u, v, w}

(if exists), we have either x ↔ w or x → w since otherwise MKn [u, w, x] /∈ C3. By noticing MKn [u, x, w], MKn [v, x, w] ∈ C3, 
one can easily verify that v → x and u → x if x ↔ w , and x ↔ v and u ↔ x if x → w .

Denote by V 1 = {x ∈ V (MKn ) | w ↔ x} ∪ {w} and V 2 = {x ∈ V (MKn ) | w ← x}. It is clear that u, v ∈ V 2 and V = V 1 ∪ V 2. 
For any two vertices x1, x′

1 ∈ V 1 \ {w}, we have x1 ↔ x′
1 since x1, x′

1 ↔ w and MG [x1, x′
1, w] ∈ C3. Similarly, we have x2 ↔ x′

2
for any x2, x′

2 ∈ V 2. Moreover, for any x1 ∈ V 1 \{w} and x2 ∈ V 2, we have x2 → x1 since x1 ↔ w , x2 → w and MG [x1, x2, w] ∈
C3. Thus, MKn = Kn[s, t] where s = |V 2| ≥ 2 and t = |V 1| ≥ 1. �

Similarly, we get the following result.

Lemma 10. Let MKn be a mixed graph on n ≥ 3 vertices in which any mixed triangular belongs to C3. If MKn contains K 2,3
3 , then 

MKn ∈ {Kn[s, t] | s ≥ 1, t ≥ 2, s + t = n}.

Proof. Assume that u, v, ω induce a K 2,3
3 with u ← ω, v ← ω and u ↔ v . For any vertex x ∈ V (MKn )\{u, v, ω} (if exists), we 

have either x ↔ ω or x ← ω since otherwise MKn [u, w, x] /∈ C3. Note that MKn [u, x, w], MKn [v, x, w] ∈ C3. We have x → u
and x → v if ω ↔ x, and x ↔ u and x ↔ v if ω → x. Let V 3 = {x ∈ V (MKn ) | ω ↔ x} ∪ {ω} and V 4 = {x ∈ V (MKn ) | ω → x}.

Clearly, V (MKn ) = V 3 ∪ V 4, u, v ∈ V 3. Taking x3, x′
3 ∈ V 3 and x4, x′

4 ∈ V 4, we get x3 ↔ x′
3 and x4 ↔ x′

4, Therefore, V 3 and 
V 4 induce a clique, respectively, and |V 3| ≥ 1, |V 4| ≥ 2. Moreover, we also have x3 → x4 for any x3 ∈ V 3, x4 ∈ V 4. Therefore, 
we get MKn = Kn[s, t] with s = |V 3| ≥ 1 and t = |V 4| ≥ 2. �

Lemmas 9 and 10 yield the following result.

Theorem 2. Let MKn be a mixed graph with underlying graph Kn and n ≥ 3. Then the following statements are equivalent:

(i) any mixed triangle of MKn belongs to C3;
(ii) MKn ∈ {Kn[s, t] | s, t ≥ 0, s + t = n};
(iii) MKn ∈ [Kn].

Proof. Firstly, assume that any triangle of MKn belongs to C3. Lemma 9 and Lemma 10 indicate that MKn ∈ {Kn[s, t] | s ≥
1, t ≥ 1, s + t = n} when MG contains K 2,2

3 or K 2,3
3 . If MKn contains neither K 2,2

3 nor K 2,3
3 , then any mixed triangle of MKn is 

K3, and thus MKn = Kn = Kn[n, 0]. Conversely, one can easily verify that any mixed triangle of Kn[s, t] belongs to C3. Thus, 
(i) ⇔ (ii).

Next we will show [Kn] = {Kn[s, t] | s, t ≥ 0, s + t = n}. It is clear that {Kn[s, t] | s, t ≥ 0, s + t = n} ⊆ [Kn]. It suffices 
to show that [Kn] ⊆ {Kn[s, t] | s, t ≥ 0, s + t = n}. By the arguments above, it only needs to show that any mixed triangle 
in MKn belongs to C3 for any MKn ∈ [Kn]. Assume that H(MKn ) = [h j,k] for a mixed graph MKn ∈ [Kn]. Since MKn ∈ [Kn], 
there exists a diagonal matrix D = diag(d1, d2, . . . , dn) with d j ∈ {±i, ±1} such that D H(MKn )D∗ = H(Kn). Therefore, for any 
{u, v, w} ⊆ V (MKn ), we have

⎛
⎝

du

dv

dw

⎞
⎠

⎛
⎝

0 huv hwu

huv 0 hv w

hwu hv w 0

⎞
⎠

⎛
⎝

du

dv

dw

⎞
⎠ =

⎛
⎝

0 1 1
1 0 1
1 1 0

⎞
⎠ .

It leads to duhuvdv = 1, dvhv wdw = 1 and dwhwudu = 1. Thus, we have huvhv whwu = 1. It implies that either exactly one of 
huv , hv w , hwu equals to 1 or all of them equal to 1. If the former case happens, say huv = 1, then {hv w , hwu} = {±i}, which 
means MKn [u, v, w] = K 2,2

3 or K 2,3
3 . If the latter case happens, then MKn [u, v, w] = K3. Therefore, (ii) ⇔ (iii).

The proof is completed. �
Now we give a simple application of Theorem 2 as follows.
5
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Theorem 3. Let MG be a connected mixed graph on n vertices. Then λmin(MG) > −√
2 if and only if MG ∈ {Kn[s, t] | s, t ≥ 0, s + t =

n}.

Proof. Theorem 2 implies that the mixed graph Kn[s, t] has the spectrum {n − 1, [−1]n−1}, and the sufficiency follows. 
Now we consider the necessity. Assume that MG is a mixed graph on n vertices with λmin(MG ) > −√

2. Since Sp(M P3 ) =
Sp(P3) = {±√

2, 0}, the path P3 cannot be an induced subgraph of G due to Corollary 1. Thus, we have G = Kn . Furthermore, 
since λmin(MG ) > −√

2 > −√
3, Lemma 7 also implies that each triangle in MG belongs to C3. Thus, we have MG ∈ {Kn[s, t] |

s, t ≥ 0, s + t = n} by Theorem 2. �
Theorem 3 gives the characterization of mixed graphs with λmin > −√

2. In what follows, we will further determine the 
mixed graphs with λmin ≥ −√

2.

Lemma 11. Let MG be a connected mixed graph on n vertices. If λmin(MG) ≥ −√
2, then G is {P3∇K1, (K2 ∪ K1)∇K1}-free.

Proof. Suppose to the contrary that G contains induced H for H ∈ {P3∇K1, (K2 ∪ K1)∇K1}. Therefore, Corollary 1
means that λ4(MH ) ≥ −√

2 > −√
3, and thus each mixed triangle of MH belongs to C3. Note that H has no cycle 

with length greater than 3. Theorem 1 implies that λ4(MH ) = λ4(H), which equals to λ4(P3∇K1) = −1.56 < −√
2 or 

λ4((K2 ∪ K1)∇K1) = −1.48 < −√
2, a contradiction. �

By Lemma 11, we get the following result.

Theorem 4. Let MG be a connected mixed graph on n ≥ 4 vertices. Then λmin(MG ) ≥ −√
2 if and only if MKn ∈ {Kn[s, t] | s, t ≥

0, s + t = n} ∪ C4 .

Proof. The sufficiency is immediate and we show the necessity in what follows. We divide two cases to discuss.
Case 1. G is P3-free.
In this case, we have G = Kn . Since λmin(MG) ≥ −√

2 > −√
3, any mixed triangle in MG belongs to C3 by Lemma 7. 

Thus, Theorem 2 means MG ∈ {Kn[s, t] | s, t ≥ 0, s + t = n}.
Case 2. G is not P3-free.
In this case, suppose that there exists u, v, w ∈ V (G) such that G[u, v, w] = P3 with u ∼ v and v ∼ w . Note that 

λ4(P4) ≈ −1.618 < −√
2 and λ4(K1,3) = −√

3 < −√
2. Corollary 1 implies that G is {P4, K1,3}-free, and thus the diameter 

d(G) = 2. Therefore, each vertex y ∈ V (G) \ {u, v, w} of V (G) is adjacent to at least one vertex of {u, v, w}. If y is adjacent 
to exactly one vertex of {u, v, w}, then G either contains an induced P4 or K1,3, which is impossible. If y is adjacent to all 
the vertices {u, v, w}, then G[u, v, w, y] = P3∇K1, which contradicts Lemma 11. Thus, y is adjacent to exactly two vertices 
of {u, v, w}. If y ∼ u, v or y ∼ v, w , then G[u, v, w, y] = (K2 ∪ K1)∇K1, which contradicts Lemma 11. Thus, y ∼ u, w , that 
is G[u, v, w, y] = C4. Next, we claim that n = 4. Otherwise, there exists another vertex y′ ∈ V (G) \ {u, v, w, y}. By regarding 
y′ as y, we have G[u, v, w, y′] = C4. Therefore, we have G[u, v, y, y′] = K1,3 when y � y′ and G[u, v, y, y′] = (K2 ∪ K1)∇K1
when y ∼ y′ , which are all impossible. Therefore, we have G = C4, and thus MG ∈ C4 by Fig. 1.

This completes the proof. �
In what follows, we characterize the mixed graph MG with λmin(MG) > − 1+√

5
2 . We first find some structural constraints 

on the underlying graph G .

Lemma 12. If MG is a mixed graph with underlying graph G = Km,n, then λmin(MG) ≤ − 1+√
5

2 except for G ∈ {K2, K1,2, K2,2}.

Proof. Assume λmin(MG) > − 1+√
5

2 , then G has no K1,3 as an induced subgraph since λ3(K1,3) = −√
3 < − 1+√

5
2 ≈ −1.618. 

This leads to G ∈ {K2, K1,2, K2,2}. �
By applying Theorem 1, we get the following result.

Lemma 13. Let MG be a connected mixed graph on n vertices. If λmin(MG) > − 1+√
5

2 then G is {P4, K1,3, K2,3, 2K1∇K1,2 =
K1∇K2,2, K2∇3K1, K2∇(K2 ∪ K1), K2∇K1,2, 2K1∇K3}-free.

Proof. By Corollary 2, we have λ4(M P4 ) = λ4(P4) = − 1+√
5

2 for any M P4 ∈ MP4 and λ4(MK1,3 ) = λ4(K1,3) = −1.73 <
− 1+√

5
2 for any MK1,3 ∈ MK1,3 . Thus, Corollary 1 implies that G is {P4, K1,3}-free. Suppose to the contrary that G con-

tains an induced K2,3. Corollary 1 indicates that λ5(MK2,3 ) > − 1+√
5

2 , which contradicts Lemma 12.
Suppose to the contrary that G contains an induced K1∇K2,2 labeled as Fig. 2. Since M = MK1∇K2,2 has smallest eigen-

value greater than −
√

5+1
2 , Lemma 7 implies all mixed triangles of M belong to C3 and Lemma 8 implies all quadrangles 

of M belong to C4. If the mixed induced quadrangle MK2,2 is equal to C3, then we have either u1 → v or v → u2 since 
4

6
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Fig. 2. The graphs used in Lemma 13.

M[u1, v, u2] ∈ C3. It leads to that u1 → v and thus v ↔ u2 since otherwise v → u2 and M[v, u2, u3] /∈ C3 (see Fig. 2(1)). 
Since v ↔ u2, u2 → u3 and M[v, u2, u3] ∈ C3, we have v → u3 (see Fig. 2(2)). However, M[v, u3, u4] cannot belong to C3, a 
contradiction. Similarly, if the mixed induced quadrangle MK2,2 is equal to C1

4 or C2
4 , then M ∈ {M1, M2, M3} whose smallest 

eigenvalues are all −2 < −
√

5+1
2 , a contradiction.

Suppose to the contrary that G contains an induced subgraph H in {K2∇3K1, K2∇(K2 ∪ K1), K2∇K1,2, 2K1∇K3}. There-

fore, MG contains a mixed induced graph MH with order 5. Corollary 1 indicates that λm(MH ) ≥ λmin(MG ) > − 1+√
5

2 . Thus, 
each mixed triangle in MH belongs to C3. Note that H contains no cycle of length greater than 3. Theorem 1 implies that 
λm(MH ) = λm(H). It leads to a contradiction since λ5(K2∇3K1) = −2, λ5(K2∇(K2 ∪ K1)) = −1.68, λ5(K2∇K1,2) = −1.65

and λ5(2K1∇K3) = −1.65 which are all smaller than − 1+√
5

2 . �
From Lemma 13, we determine the underlying graphs of MG with smallest eigenvalue greater than − 1+√

5
2 .

Lemma 14. Let MG be a connected mixed graph on n vertices. If λmin(MG ) > − 1+√
5

2 , then G belongs to
{

K2,2, K1∇K1,2,2K2∇2K1, (K2 ∪ K1)∇2K1
}⋃

{(Ks ∪ Kt)∇K1 | s, t ≥ 0, s + t = n − 1} .

Proof. We may assume that n ≥ 2 since there is nothing to prove when n = 1. From Lemma 13, we have G is P4-free and 
thus G = X∇Y with |X |, |Y | ≥ 1 due to Lemma 3. If both X and Y have no edge, then G = Km,n and thus G ∈ {K2, K1,2, K2,2}
due to Lemma 12, where both K2 = (K1 ∪ K0)∇K1 and K1,2 = (K1 ∪ K1)∇K1 have the form (Ks ∪ Kt)∇K1. Now we may 
assume that one of X and Y contains K2, say X . Therefore, Lemma 13 implies that Y is {3K1, K2 ∪ K1, K1,2}-free and thus 
Y ∈ {2K1, Ks | s ≥ 1} due to Lemma 4. If Y = Ks with s ≥ 2, then Lemma 13 implies that X is {3K1, K2 ∪ K1, K1,2}-free. 
Thus, Lemma 4 means that X = Kr with r ≥ 2 since X contains K2. Therefore, G = Kn = (Kn−1 ∪ K0)∇K1 with n ≥ 4. If 
Y = 2K1, then Lemma 13 indicates that X is {3K1, K1,2, K3}-free. Hence, X ∈ {2K2, K2 ∪ K1, K2} due to Lemma 4, and thus 
G ∈ {2K2∇2K1, (K2 ∪ K1)∇2K1, K2∇2K1 = K1∇K1,2}.

In what follows, we consider the case of Y = K1, that is G = X∇K1. Since G is K1,3-free according to Lemma 13, we 
have X is {3K1}-free and X has at most two connected components. Suppose that X has two connected components, say 
X1 and X2 with |X1|, |X2| ≥ 1. Then both X1 and X2 are P3-free since otherwise X has an induced 3K1, and so X1 and X2
are complete graphs. Therefore, G = (Ks ∪ Kt)∇K1 with s + t = n − 1 and s, t ≥ 1. Next we may assume that X is connected. 
Since X is P4-free, we have X = X1∇Y1 with |X1|, |Y1| ≥ 1 from Lemma 3. If both X1 and Y1 have no edges, then X
is a bipartite graph and so X ∈ {K2, K1,2, K2,2} by Lemma 12. Note that Lemma 13 means that G is K1∇K2,2-free. Thus, 
G ∈ {K3, K1∇K1,2}. Now we may assume that X1 contains a K2. Then Y1 is {3K1, K2 ∪ K1, K1,2}-free by Lemma 13. Hence, 
7
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Y1 ∈ {Ks, 2K1} by Lemma 4. If Y1 = Ks with s ≥ 2, then X1 is {3K1, K2 ∪ K1, K1,2}-free by Lemma 13. By Lemma 4, we have 
X1 = Kt(t ≥ 2) since X1 has an edge. Note that G = X∇K1 = (X1∇Y1)∇K1. Therefore, G = (Ks∇Kt)∇K1 = Kn for n ≥ 5. If 
Y1 = 2K1, then G = X1∇2K1∇K1 = X1∇K1,2. Lemma 13 indicates that X1 is {2K1, K2}-free, and thus X1 = K1. Therefore, 
G = K1∇K1,2. If Y1 = K1, then G = X1∇K1∇K1 = X1∇K2. Therefore X1 is {3K1, K2 ∪ K1, K1,2}-free by Lemma 13. Lemma 4
indicates that X1 = Ks(s ≥ 2) since X1 has an edge. Thus, G = Ks∇K2 = (Kn−1∇K0)∇K1 with n ≥ 4.

The proof is completed. �
In what follows, we detect all mixed graphs whose smallest eigenvalues are greater − 1+√

5
2 by considering one by one 

all the possible underlying graphs.

Lemma 15. Let MG be a mixed graph with G = (K2 ∪ K1)∇2K1 . If any mixed triangle of MG belongs to C3 and any induced mixed 
quadrangle of MG belongs to C4 , then MG ∈ {H1, ..., H9} shown in the Appendix.

Proof. Let V (G) = {v1, v2, ..., v5} (see the Appendix). Clearly, MG has two induced quadrangles MG [v1, v2, v3, v4] and 
MG [v1, v5, v3, v4]. Note that any induced mixed quadrangle belongs to C4. We divide four cases to discuss.

Case 1. One of them is C3
4 .

In this case, we may assume MG [v1, v2, v3, v4] = C3
4 . Clearly, there are two different orientations of the mixed cycle 

MG [v1, v2, v3, v4]: v1 → v2 → v3 → v4 and v1 → v4; v2 → v3 → v4 → v1 and v2 → v1. If the former happens, then 
MG [v1, v5, v3, v4] = C3

4 , and thus v1 → v5, v5 → v3 and v2 ↔ v5 since any induced mixed triangle belongs to C3. It yields 
that MG = H1. If the latter happens, then MG [v1, v5, v3, v4] = C1

4 or C3
4 . Therefore, one can easily verify that MG = H2

when MG [v1, v5, v3, v4] = C1
4 , and MG = H3 when MG [v1, v5, v3, v4] = C3

4 .
Case 2. MG [v1, v2, v3, v4] = MG [v1, v5, v3, v4] = C2

4 .
In this case, there are also two different orientations of MG [v1, v2, v3, v4]: v1 → v2, v2 ↔ v3, v3 → v4, v4 ↔ v1; 

v1 ↔ v2, v2 → v3, v3 ↔ v4 and v4 → v1. Therefore, one can easily verify that MG = H4 when the former happens and 
MG = H5 when the latter happens by noticing that any mixed triangle belongs to C3.

Case 3. MG [v1, v2, v3, v4] = MG [v1, v5, v3, v4] = C1
4 .

In this case, there are three different orientations of MG [v1, v2, v3, v4]: v1 → v2, v2 → v3, v3 ↔ v4 and v4 ↔ v1; 
v1 ↔ v2, v2 → v3, v3 → v4 and v4 ↔ v1; v1 ↔ v2, v2 ↔ v3, v3 → v4 and v4 → v1. One can easily verify that MG = H6
when the first case happens, MG = H7 when the second case happens, and MG = H8 when the third case happens.

Case 4. MG [v1, v2, v3, v4] = C1
4 and MG [v1, v5, v3, v4] = C2

4 .
In this case, there are three different orientations of MG [v1, v2, v3, v4]: v1 → v2, v2 → v3, v3 ↔ v4 and v4 ↔ v1; 

v1 ↔ v2, v2 → v3, v3 → v4 and v4 ↔ v1; v1 ↔ v2, v2 ↔ v3, v3 → v4 and v4 → v1. If the first or the third case happens, 
then MG [v1, v5, v3, v4] cannot be C2

4 , which is impossible. If the second case happens, then MG = H9.
This completes the proof. �
As similar to Lemma 15, we present the following result but omit the tautological proof.

Lemma 16. Let MG be a mixed graph with G = 2K2∇2K1 . If any mixed triangle of MG belongs to C3 and any induced mixed quad-
rangle belongs to C4 , then MG ∈ {H10, ..., H20} shown in the Appendix.

The coalescence M •u,v M ′ of two mixed graphs M and M ′ is obtained from M ∪ M ′ by identifying a vertex u of M with 
a vertex v of M ′ .

Lemma 17. Let G be a connected graph with a cut vertex v such that G − v = G1 ∪ G2 with V 1 = V (G1) and V 2 = V (G2). If 
G+

1 = G[V 1 ∪ {v}] and G+
2 = G[V 2 ∪ {v}], then [G] = {M •v,v M ′ | M ∈ [MG+

1
], M ′ ∈ [G+

2 ]}.

Proof. It is clear that G = G+
1 •v,v G+

2 . For any M • M ′ with M ∈ [MG+
1
] and M ′ ∈ [G+

2 ], there exist diagonal matrices D1 and 
D2 with diagonal entries in {±1, ±i} such that D1 H(M)D∗

1 = H(G+
1 ) and D2 H(M ′)D2 = H(G+

2 ). Note that the v-th diagonal 
entries of D1 and D2 satisfy D2(v) = εD1(v) for some ε ∈ {±1, ±i}. Let D be the diagonal matrix indexed by V (G) such 
that the diagonal entries are D(v1) = D1(v1) for v1 ∈ V 1 ∪ {v} and D(v2) = εD2(v2) for v2 ∈ V 2. Therefore, one can easily 
verify that D H(M •v,v M ′)D∗ = H(G+

1 •v,v G+
2 ) = H(G), and thus M •v,v M ′ ∈ [G].

Conversely, for any MG ∈ [G], there exists diagonal matrix D such that D H(MG )D∗ = H(G). Note that MG = M •v,v M ′
where M = MG [V 1 ∪{v}] and M ′ = MG [V 2 ∪{v}]. Let D1 and D2 be the diagonal matrices indexed by V 1 ∪{v} and V 2 ∪{v}
respectively such that the diagonal entries are D1(v1) = D(v1) for any v1 ∈ V 1 ∪ {v} and D2(v2) = D(v2) for any v2 ∈
V 2 ∪ {v}. Therefore, one can easily verify that D1 H(M)D∗

1 = H(G+
1 ) and D2 H(M ′)D∗

2 = H(G+
2 ), and thus M ∈ [G+

1 ] and 
M ′ ∈ [G+

2 ]. �
Now we are ready to present our main result.

Theorem 5. Let MG be a connected mixed graph on n vertices. Then λmin > − 1+√
5 if and only if MG ∈H1 ∪H2 ∪H3 ∪H4 , where
2

8
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1 = {C1
4, C2

4, C3
4, H1, H2, . . . , H27},

H2 = {M •u,v M ′ | u ∈ V (M), v ∈ V (M ′), M ∈ [K3], M ′ ∈ [K3] ∪ [K4]},
H3 = [Kn] = {Kn[s, t] | s, t ≥ 0, s + t = n},
H4 = {M •u,v M ′ | u ∈ V (M), v ∈ V (M ′), M ∈ [K2], M ′ ∈ [Kn−1]}.

Proof. To prove the sufficiency, it only needs to show that each graph in H1 ∪H2 ∪H3 ∪H4 has smallest eigenvalue greater 
than − 1+√

5
2 . By immediate calculations, the smallest eigenvalues of C1

4 , C2
4, C3

4 are all −√
2 > − 1+√

5
2 and the smallest 

eigenvalues of H1, H2, . . . , H27 are all −1.56 > − 1+√
5

2 (see the Appendix). For any M ∈ [K3] and M ′ ∈ [K3], Lemma 17 im-
plies that Sp(M •u,v M ′) = Sp(K3 •u,v K3). Thus, we have Sp(M •u,v M ′) = {2.56, 1, [−1]2, −1.56} by immediate calculations. 
Similarly, if M ∈ [K3] and M ′ ∈ [K4], we have Sp(M •u,v M ′) = {3.26, 1.34, [−1]3, −1.60}. Theorem 2 implies that Kn[s, t] has 
smallest eigenvalue −1. For any MG ∈ H4, Lemma 17 implies that Sp(MG) = Sp(Kn−1 •u,v K2), whose smallest eigenvalue 
is the smallest root of ϕ(x) = x3 + (3 − n)x2 + (1 − n)x − 1 = 0. Note that ϕ(−1) = 0, ϕ(− 1+√

5
2 ) = 1 − n < 0 for n ≥ 2. The 

smallest root of ϕ(x) is greater than − 1+√
5

2 by the image of ϕ(x), and thus λmin(MG) > − 1+√
5

2 .

In what follows, we show the necessity. Since λmin(MG ) > − 1+√
5

2 , Lemmas 7 and 8 indicate that any mixed triangle 
of MG belongs to C3 and any mixed induced quadrangle of MG belongs to C4. From Lemma 14, the underlying graph G
belongs to

{
K2,2, K1∇K1,2,2K2∇2K1, (K2 ∪ K1)∇2K1

}⋃
{(Ks ∪ Kt)∇K1 | s + t = n − 1} .

If G = K2,2, then MG ∈ {C1
4, C2

4, C3
4} ⊆H1 due to Lemma 8. If G = K1∇K1,2, then G contains no induced cycle with length 

greater than 3. Thus, Theorem 1 implies that MG ∈ [K1∇K1,2] = {H21, . . . , H27} ⊆ H1. If G = 2K2∇2K1 or (K2 ∪ K1)∇2K1, 
then MG ∈ {H1, . . . , H20} ⊆H1 due to Lemmas 15 and 16.

If G = (Ks ∪ Kt)∇K1 with s = 0 or t = 0, then G = Kn . Since any mixed triangle of MG belongs to C3, Theorem 2 means 
that MG = MKn ∈ {Kn[s, t] | s, t ≥ 0, s + t = n} = [Kn] = H3. Now we suppose G = (Ks ∪ Kt)∇K1 with s, t ≥ 1 and s ≥ t . Note 
that G contains no induced cycle with length greater than 3, Theorem 1 indicates that MG ∈ [G] and thus Sp(MG) = Sp(G). 
Note that [(Ks ∪ Kt)∇K1] = {M •u,v M ′ | M ∈ [Ks+1], M ′ ∈ [Kt+1]} due to Lemma 17. Assume that π : V (G) = V 1 ∪ {v} ∪ V 2

is the partition such that G[V 1 ∪ {v}] = Ks+1 and G[V 2 ∪ {v}] = Kt+1. The Hermitian matrix of G is

H(G) =
⎛
⎝

J s − Is 1s 0s×t

1T
s 0t×s 1T

t
0 1 J s − Is

⎞
⎠ ,

where J , I , 1 and 0 are respectively the all-one matrix, identity matrix, all-one vector and zero matrix with the correspond-
ing sizes. Therefore, Lemma 2 indicates that π is an equitable partition with quotient matrix

Hπ =
⎛
⎝

s − 1 1 0
s 0 t
0 1 t − 1

⎞
⎠ .

Assume that V 1 = {v1, v2, . . . , vs} and V 2 = {u1, u2, . . . , ut}. For 1 ≤ j ≤ s and 1 ≤ k ≤ t , let δ1, j ∈Rs be the vector indexed 
by V 1 such that δ1, j(v1) = 1, δ1, j(v j) = −1 and δ1, j(v j′ ) = 0 for j′ /∈ {1, j} and let δ2,k be the vector indexed by V 2 such 
that δ2,k(u1) = 1, δ2,k(uk) = −1 and δ2,k(uk′ ) = 0 for k′ /∈ {1, k}. It is easy to see that H(G)δ1, j = −δ1, j and H(G)δ2,k = −δ2,k

for any j and k, and thus H has an eigenvalue −1 with multiplicity at least s + t − 2 = n − 3. Lemma 2 implies that the 
other three eigenvalues of G are just the roots ε1 ≥ ε2 ≥ ε3 of the function f (x) = det(xI − Bπ ) = x3 + (2 − t − s)x2 + (st −
2t − 2s + 1)x − s − t + 2st , and thus ε3 = λmin(G) > − 1+√

5
2 . It is clear that f (0) = st − s − t ≥ 0. Note that ε1 > 0. By the 

image of the function f (x), we have f (− 1+√
5

2 ) < 0. If t ≥ 3 then

f (−1 + √
5

2
) = 3 − √

5

2
(st − s − t) + 1 − √

5

2
≥ 3 − √

5

2
s + 1 − √

5

2
≥ 5 − 2

√
5 > 0,

a contradiction. Thus, we have t ≤ 2. If t = 2 then f (− 1+√
5

2 ) = 3−√
5

2 s − 5−√
5

2 < 0. It leads to s < 5+√
5

2 ≈ 3.62. Thus, we have 
s = 2 or 3 since s ≥ t = 2. It means MG ∈ [(K2 ∪ K2)∇K1] ∪ [(K3 ∪ K2)∇K1] = {M •u,v M ′ | M ∈ [K3], M ′ ∈ [K3] ∪ [K4]} =H2. 
If t = 1 then f (− 1+√

5
2 ) = −1 < 0 always holds. Thus, s ≥ t = 1 and MG ∈ [(Ks ∪ K1)∇K1] = {M •u,v M ′ | M ∈ [K2], M ′ ∈

[Kn−1]} =H4.
This completes the proof. �
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Appendix A. The mixed graphs C4 and H1, . . . , H27 with their smallest eigenvalues
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