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Let G be a connected graph on n vertices. For a vertex u ∈ G, 
the eccentricity of u is defined as ε(u) = max{d(u, v) | v ∈
V (G)}, where d(u, v) denotes the distance between u and v. 
The eccentricity matrix E(G) = (εuv), where

εuv :=
{
d(u, v) if d(u, v) = min{ε(u),ε(v)},
0 otherwise,

has been firstly introduced in Chemical Graph Theory. In 
literature, it is also known as the DMAX-matrix. Graphs 
with the diameter equal to the radius are called self-centered 
graphs. Two non-isomorphic graphs are said to be M -
cospectral with respect to a given matrix M if they have 
the same M -eigenvalues. In this paper, we show that, when 
n → ∞, the fractions of non-isomorphic cospectral graphs 
with respect to the adjacency and the eccentricity matrix 
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behave like those only concerning the self-centered graphs 
with diameter two. Secondly, we prove that a graph G
has just two distinct E-eigenvalues if and only if G is an 
r-antipodal graph. Thirdly, we obtain many pairs of E-
cospectral graphs by using strong and lexicographic products. 
Finally we formulate some problems waiting to be solved in 
order to build up a spectral theory based on the eccentricity 
matrix.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Our main source for notation and terminology is [13]. Even when not explicitly stated, 
all graphs in this paper are assumed to be simple, undirected and connected. Let G =
(V (G), E(G)) be such a graph with order |V (G)| = n and size |E(G)| = m. Let M =
M(G) be a corresponding graph matrix defined in a prescribed way. The M -polynomial of 
G is defined as φM (G, λ) = det(λI−M), where I is the identity matrix. The M -spectrum
of G, denoted by spM (G), is the multiset of the M -eigenvalues. Among the most studied 
graph matrices, there are the adjacency matrix A(G), the Laplacian matrix L(G), the 
signless Laplacian matrix Q(G) and the distance matrix D(G). Noteworthily, a newer 
graph matrix, the Hermitian adjacency matrix, was introduced by Guo and Mohar [29]
and Liu and Li [38] independently.

Non-isomorphic graphs with the same M -spectrum are called M -cospectral. A prop-
erty P is said to be M -cospectral invariant if for every pair G, H of graphs such that P
holds for G and spM (G) = spM (H), then P holds for H as well. An M-cospectral mate of 
G is a graph H which is M -cospectral to G. If no M -cospectral mates of G exist, we say 
that G is determined by its M -spectrum, or equivalently that G is a DMS-graph. The 
problem ‘which graphs are determined by their spectrum?’ originates from Chemistry: 
in fact, it was formulated in 1956 by Günthard and Primas [28] in the context of Hück-
el’s theory. The same problem has often been considered in the more general setting of 
spectral graph theory. Yet, the investigations progressed very slowly along the past fifty 
years. For additional remarks on this topic we refer the readers to the excellent surveys 
[18,19]. Theorem 1.1 below states a quite famous result in this field.

Theorem 1.1. [42] Almost all trees are A-cospectral.

Schwenk, who proved Theorem 1.1, also proposed the following still unsolved conjec-
ture.

Conjecture 1. [42] Almost all graphs are A-cospectral.
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Table 1
Fractions of M-cospectral graphs-I.
n 3 4 5 6 7 8 9 10 11
A 0 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211
A&A 0 0 0 0 0.038 0.094 0.160 0.201 0.208
L 0 0 0 0.026 0.125 0.143 0.155 0.118 0.090
Q 0 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

Parallel conjectures can be stated with respect to other graph matrices. If fact, many 
researchers have tried to grasp whether almost all graphs are M -cospectral for suitable 
M �= A(G).

Notably, Schwenk pointed that Theorem 1.1 offers no guidance for his Conjecture 1. 
On the other hand, based on the evidence provided by computer data available in [27,30]
and summed up in Table 1, the authors of [18,30] gave credit to the still widely open 
Conjecture 2, formally proposed by Haemers in a talk at the 21th ILAS Conference in 
2017 (see [31]). Note that, by definition, the generalized spectrum of a graph G is the 
A-spectrum together with the adjacency spectrum of the complement G, i.e., the graph 
with V (G) = V (G) such that vi and vj are adjacent in Ḡ if and only if they are not 
adjacent in G.

Conjecture 2. [31] Almost all graphs are determined by the adjacency (or Laplacian, or 
generalized) spectrum.

As it is usual, Pn, Cn, Sn and Kn will denote the path, the cycle, the star and 
the complete graph of order n, respectively. The union of two disjoint graphs G1 and 
G2, denoted by G1 ∪ G2, is the graph with vertex set V (G1) ∪ V (G2) and edge set 
E(G1) ∪ E(G2). The complete product (or join) of two graphs, denoted by G1∇G2, is 
obtained from G1 ∪G2 by adding all edges between G1 and G2.

The other sections of this paper are organized as follows. In Section 2, we introduce the 
distance-like matrix of graphs known as the eccentricity matrix E(G) of a graph G. The 
E-spectra of graphs with order at most 9 arouses the expectation that the fraction of E-
cospectral graphs tends to 1 as n → ∞. In Section 3, we discuss how self-centered graphs
(we shall often refer to them as SC-graphs), distance-regular graphs and antipodal graphs
are related, giving for such third family of graphs an E-eigenvalue characterization. In 
Section 4, we describe some techniques to get E-cospectral pairs. Finally, in Section 5, 
we list some open problems in E-spectral theory and some existing partial answers given 
to them.

2. A new perspective for the spectral determination of graphs

2.1. A distance-related matrix: the eccentricity matrix

We now define the eccentricity matrix and investigate the role it plays in Conjectures 1
and 2.
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For a graph G, the distance dG(v, w) between two vertices v and w is the length of the 
shortest (v, w)-path connecting them. Clearly, dG(v, v) = 0. Let D(G) = (duv) be the 
distance matrix of G, where duv = dG(u, v). Related to the distance matrix, the distance 
(signless) Laplacian matrix DL (DQ) was introduced by Aouchiche and Hansen [2]. The 
eccentricity εG(u) of the vertex u ∈ V (G) is given by εG(u) = max{d(u, v) | v ∈ V (G)}
(the subscript G will be omitted if the context makes it clear). The numbers

rad(G) := min{ε(u)|u ∈ V (G)} and diam(G) := max{ε(u)|u ∈ V (G)}

give the radius and the diameter of G respectively. They are known to satisfy the relations

rad(G) ≤ diam(G) ≤ 2rad(G). (1)

As in [45], the generic element εuv of the eccentricity matrix E(G) of G is defined as 
follows:

εuv =
{

d(u, v) if d(u, v) = min{ε(u), ε(v)};
0 otherwise.

By comparing the definitions, it turns out that E(G) is equal to the DMAX-matrix intro-
duced by Randić in [41] as a tool for Chemical Graph Theory. Since the importance of 
vertex-eccentricity is not limited to applications to chemistry, the author asserted that 
such a matrix might open new directions of exploration in other branches of graph theory 
as well. The matrix E(G) is constructed from D(G) by only keeping the largest distances 
for each row and each column, whereas the remaining entries become null. That is why 
E(G) can be interpreted as the opposite of the adjacency matrix, which is instead con-
structed from D(G) by keeping only distances equal to 1 on each row and each column. 
From this point of view, A(G) and E(G) are extremal among all possible distance-like 
matrices.

Since E(G) is symmetric, the E-eigenvalues are real. Therefore, the E-spectrum of G
can be written as

spE(G) =
{

ξ1 ξ2 · · · ξk
m1 m2 · · · mk

}
,

where ξ1 > ξ2 > · · · > ξk are the distinct E-eigenvalues, and mi is the multiplicity of the 
eigenvalue ξi for each i = 1, 2, . . . , k.

The first three rows of Table 2 are taken from [2]. To fill out the fourth one, we 
first used Sagemath, a computer program for generating graphs, and secondly we have 
calculated with Mathematica the E-spectrum of all connected graphs up to 9 vertices. 
In contrast to the behavior of the other 7 type of matrices considered in Tables 1 and 2, 
the data about E-matrices reveal that the proportion of E-cospectral graphs is nearly 
50% for the graphs with 7, 8 or 9 vertices, arousing the expectation that the fraction of 
E-cospectral graphs tends to 1 as n → ∞.
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Table 2
Fractions of M-cospectral graphs-II.
n 3 4 5 6 7 8 9 10
D 0 0 0 0 0.0258 0.0592 0.0960 0.1186
DL 0 0 0 0 0.0670 0.0504 0.0758 0.0672
DQ 0 0 0.0952 0.0536 0.0445 0.0407 0.0313 0.073
E 0 0 0.0952 0.2143 0.4576 0.4464 0.4953 —

Proposition 2.1. Let G be a connected graph of order n, and let G be its complement.

(i) If diam(G) = 2 and Δ(G) < n − 1, then

A(G) = D(G) + In − Jn = 1
2E(G). (2)

(ii) If diam(G) > 3, then A(G) = 1
2E(G).

Proof. Clearly, (i) holds. For any two vertices u, v ∈ V (G), if uv /∈ E(G), then dG(u, v) =
1. If uv ∈ E(G), there exists at least one vertex w such that both uw and vw are not 
in E(G), otherwise diam(G) < 3, which is not the case. This implies that dG(u, v) = 2. 
Having proved that diam(G) = 2, by part (i) we have E(G) = 2A(G). �
Lemma 2.2. Almost all connected graphs have radius and diameter equal to 2.

Proof. By the principle of inclusion-exclusion, the probability that at least one vertex is 
adjacent to all the others is at most n/2n−1, a number going to 0 as n → ∞. It follows 
that almost all graphs with order n have maximum degree Δ(G) < n − 1. Since it is 
known that almost all connected graphs have diameter 2 (see [6]), by rad(G) ≤ diam(G)
we can infer that almost all graphs with order n have diameter 2 and maximum degree 
Δ(G) < n − 1. �

Lemma 2.2 and Equality (2) yield to the following important fact.

Proposition 2.3. Almost all connected graphs satisfy the equality E(G) = 2A(G).

Proposition 2.3 establishes a strong relationship between the spectral properties of the 
eccentricity matrix and Conjecture 1, whereas Propositions 2.1 and 2.4 somehow relate 
the matrices A, D and E . All those results give us a sufficient motivation to investigate 
and construct E-cospectral graphs later on.

As already observed, the A-matrix and E-matrix can be both obtained from the D-
matrix, moreover A(Kn) = D(Kn) = E(Kn).

Proposition 2.4. Let G be a connected graph with order n. Then

(i) E(G) = A(G) if and only if G = Kn;
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(ii) E(G) = D(G) if and only if G ∼= Kr∇Kn−r (1 ≤ r ≤ n − 1).

Proof. For (i), sufficiency is clear. From E(G) = A(G), it follows that all non-zero entries 
of E(G) are equal to 1. This implies that εG(v) = 1 for any vertex v ∈ V (G). This only 
happens when G = Kn.

We next show (ii). To avoid trivial cases we assume n > 1. Let G ∼= Kr∇Kn−r. 
The case r = n − 1 is immediate since Kn−1∇K1 ∼= Kn. Suppose now r < n − 1. 
Set D(Kr∇Kn−r) = (dij)n×n and E(Kr∇Kn−r) = (εij)n×n. Assuming that the first r
vertices of the ordered set {v1, . . . , vn} = V (G) belong to V (Kr), we have

ε(vi) =
{

1 if i ≤ r;
2 otherwise.

By analyzing the three cases i < j ≤ r; i ≤ r < j, and r < i < j, it is now easy to check 
that for all i �= j, d(vi, vj) = min{ε(vi), ε(vj)}, which means that E(G) = D(G).

Conversely, suppose E(G) = D(G). Since G is connected, for any vertex u ∈ V (G) we 
get a vertex v adjacent to u. Therefore, we get εuv = duv = 1 and thus either ε(u) = 1
or ε(v) = 1. Let V1 = {v ∈ V (G) | ε(v) = 1} and V2 = V (G) \ V1. If V2 is empty, we get 
G = Kn = Kn−1∇K1, and there is nothing else to prove.

If V2 is non-empty, we consider the subgraph H induced by V2.
By definition, each vertex of V1 is adjacent to all other vertices. Thus, G = Kr∇H, 

where r = |V1|. To complete the proof, we only need to show that the edge set of H is 
empty. This fact depends on the relation duv = εuv > 1 holding for all pairs u and v of 
distinct vertices in V2. �

For sake of completeness, we include here the E-spectra of paths and cycles computed 
by two authors of this paper elsewhere.

Proposition 2.5. [44] Let Pn be a path of order n.

(i) If n = 1, 2, 3, then

spE(P1) =
{

0
1

}
, spE(P2) =

{
1 −1
1 1

}
, spE(P3) =

{
1 +

√
3 1 −

√
3 −2

1 1 1

}
.

(ii) If n = 2k (k ≥ 2), then

spE(P2k) =
{ (6k−3)+

√
a

6
(6k−3)−√

a
6

−(6k−3)+
√
a

6
−(6k−3)−√

a
6 0

1 1 1 1 2k − 4

}
,

where a = (6k − 3)(14k2 − 20k + 9).
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Fig. 1. The smallest pair of E-cospectral graphs.

(iii) If n = 2k + 1 (k ≥ 2), then

spE(P2k+1) =
{

6k+
√
b

6
6k−

√
b

6
−6k+

√
c

6
−6k−√

c
6 0

1 1 1 1 2k − 3

}
,

where b = 6k(14k2 + 3k + 1) and c = 6k(14k2 − 9k + 1).

Proposition 2.6. [45] Let Cn be a cycle of order n.

(i) If n = 2t, then

spE(C2t) =
{
t −t

t t

}
.

(ii) If n = 2t + 1, then the E-eigenvalues of C2t+1 are

ξi = 2t cos 2πi
2t + 1 (i = 1, · · · , 2t + 1).

We end this subsection by observing that n = 5 is the smallest order for a pair of 
graphs to be E-cospectral. Such ‘minimal’ pair of graphs is depicted in Fig. 1.

2.2. Self-centered graphs and spectral determinations

Self-centered graphs had been studied extensively until the 1990s. Before giving their 
definition, we first recall some other distance-related concepts.

A diametrical (resp., central) vertex of G is a vertex u whose eccentricity is equal to 
diam(G) (resp., rad(G)).

A connected graph G is said to be an even graph if each vertex u of G has a unique 
vertex ū such that dG(u, ̄u) = diam(G) (see [25]). It immediately follows that all vertices 
of an even graph are diametrical. In literature, even graphs are also known as diametrical 
graphs and self-centered unique eccentric point graphs (see, for instance [39,40]).
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The center of a graph G, denoted by C(G), is the set of vertices with minimum 
eccentricity. A connected graph G is said to be a self-centered graph1 (or SC-graph for 
short) if |C(G)| = |V (G)| (equivalently, if rad(G) = diam(G)). In other words, the first 
inequality in (1) is an equality if and only if G is self-centered.

It is immediately seen that even graphs are a special kind of SC-graphs. The even 
cycles and the cubes are examples of even graphs. For n ≥ 3, the complete graph Kn

and the regular complete k-partite graph Kn,...,n are examples of non-even SC-graphs.
SC-graphs were discovered and independently studied by Akiya, Ando and Avis in 

1981 [1]. Through E-matrices, we have a nice characterization of them. In fact, a graph 
G is an SC-graph if and only if the non-zero elements of E(G) are equal. In Subsection 3.1
we shall give more examples involving antipodal graphs and distance-regular graphs.

It is well-known that the center of a graph/network is one of the central concepts in 
location theory. In many cases, an ideal situation would be that resources can be placed 
at any location. This can be done precisely when a graph is self-centered [35]. SC-graphs 
have been extensively studied (see [9,10,12,33] and the survey paper [11]). For instance, 
it is known that these graphs are necessarily 2-connected; moreover, for any finite group 
G there exists an SC-graph whose automorphism group is isomorphic to the group G
[37].

In order to establish connections between SC-graphs and Conjectures 1 and 2, we could 
rephrase Lemma 2.2 by saying that almost all graphs are SC-graphs with diameter 2. 
Once this is done, the following two propositions are immediate from Lemma 2.2 and 
Proposition 2.3.

Proposition 2.7. The following statements are equivalent.
i) Conjecture 1 holds;
ii) almost all SC-graphs with diameter 2 are A-cospectral;
iii) almost all SC-graphs with diameter 2 are E-cospectral.

Proposition 2.8. The following statements are equivalent.
i) Conjecture 2 holds;
ii) almost all SC-graphs with diameter two are determined by their A-spectrum;
iii) almost all SC-graphs with diameter two are determined by their E-spectrum.

Propositions 2.7 and 2.8 say that both the Schwenk Conjecture and Haemers Conjec-
ture could possibly be proved or disproved just by restricting the attention to SC-graphs 
with diameter 2. This is precisely what we do by filling the last two rows of Table 3, 
where the symbol #M denotes the fraction of M -cospectral graphs among all SC-graphs 
with diameter 2.

Numbers in each column of Table 3 are all sufficiently close to empirically endorse the 
equivalence of Conditions i)-iii) in Propositions 2.7 and 2.8.

1 It is also named as diametral graph by Fiol [21].
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Table 3
Fractions of M-cospectral graphs-III.
n 3 4 5 6 7 8 9
A 0 0 0.0588 0.0641 0.1054 0.1395 0.1858
#A 0 0 0 0 0.0971 0.1373 0.1941
#E 0 0 0 0 0.0826 0.1379 0.1921

Table 4
SC-graphs with small order.
n 3 4 5 6 7 8
SCG 1 2 5 28 221 3151
RSCG 1 2 2 5 4 16
DRG 1 2 2 4 2 5

3. Some families of SC-graphs

3.1. Distance-regular and antipodal graphs

Distance-regular graphs were introduced by Biggs in 1969. For any v ∈ V (G) and any 
i ≥ 0, we set Gi(v) := {u ∈ V (G) | d(u, v) = i}.

A k-regular connected graph G with diameter d is called distance-regular with inter-
section array

{b0 = k, b1, . . . , bd−1; c1 = 1, c2, . . . , cd}, (3)

if for every pair of vertices u, v ∈ V (G) at distance i = dG(u, v), there are precisely ci
neighbors of v in Gi−1(u) and bi neighbors of v in Gi+1(u).

Distance-regular graphs play an important role in algebraic combinatorics because of 
their applications to design theory, coding theory, finite and Euclidean geometry, and 
group theory (see [7,8]). We just quote two among the most striking results on distance-
regular graphs accomplished in the last two decades. Van Dam and Koolen provided 
in [20] the first known family of non-vertex-transitive distance-regular graphs with un-
bounded diameter. More recently, Bang, Dubickas, Koolen and Moulton [3] proved that 
there are only finitely many distance-regular graphs of fixed valency greater than 2.

We explicitly note that in a distance-regular graph all vertices share the same eccen-
tricity. Hence, each distance-regular graph is a SC-graph.

In Table 4, we exhibit the number of SC-graphs (SCG), regular SC-graphs (RSCG) 
and distance-regular graphs (DRG) with order at most 8. The proportion of DRG-graphs 
among all SC-graphs is tiny, whereas it is by far larger with respect to the regular SC-
graphs.

We then consider the following problem.

Problem 1. Under what conditions are regular SC-graphs also distance-regular graphs?

In order to formulate an answer, we need some further terminology and notation. 
Given any connected graph G with diameter d, for every non-negative integer h ≤ d the 
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distance-h graph Gh is the graph on V (G) where two vertices are adjacent whenever they 
are at distance h in G. The A-matrix of Gh, denoted by Ah, is usually referred as the 
distance-h matrix of G. Let λ0 > λ1 > · · · > λk be the distinct A-eigenvalues of G, and

π� =
k∏

j=0,j �=�

|λ� − λj |. (4)

As it is well-known, k ≤ d (see, for instance, Biggs [4, Corollary 2.7]). Then, we say that 
G is extremal when it has the maximum possible number of distinct A-eigenvalues, i.e., 
when k = d.

Proposition 3.1. [23] A self-centered graph G with diameter d is distance-regular if and 
only if G is extremal and its distance-d matrix Ad is a polynomial of degree d in the 
adjacency matrix A(G).

Fiol and Garriga also obtained in [22] the following spectral characterization of regular 
graphs.

Proposition 3.2. [22, Theorem 4.4] A regular (SC-graph) G with order n is distance-
regular if and only if, for every u ∈ V (G),

|Gd(u)| = n

π2
0
∑k

i=0
1

miπ2
i

,

where mi is the multiplicity of λi and πi is defined in (4) (0 ≤ i ≤ k).

We now turn our attention to antipodal graphs. A graph G of diameter d is called 
antipodal if there exists a partition of the vertex set into classes (called the fibers of G) 
with the property that two distinct vertices are in the same class if and only if they are 
at distance d. Each set in such partition has the form {u} ∪Gd(u) (see, for instance, [26, 
Ch. 11.5]). If all fibers have the same cardinality, say r, we say that G is an r-antipodal 
graph. Clearly, the complete graph Kn is a n-antipodal graph with diameter 1.

Observe that r-antipodal graphs (r ≥ 2) are SC-graphs, and even graphs are 2-
antipodal graphs. In Subsection 3.2 we shall have the opportunity to recap some in-
triguing results on distance-regular and antipodal graphs. Among many others, they are 
collected in [17,21,24].

Fig. 2 summarizes how several types of graphs are related. Hooked arrows represent 
inclusions; the dotted line emphasizes that not all distance-regular graphs are antipodal 
graphs.

3.2. Eigenvalue characterization of antipodal graphs

In this subsection, we give an eigenvalue characterization of antipodal graphs. Such 
characterization will be useful to construct E-cospectral graphs in Section 4.
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Fig. 2. Several types of graphs: a visual comparison.

Proverbially, the topic that the graphs with few distinct eigenvalues has been paid 
much attention. For more details see the Ph.D. thesis, due to van Dam [16]. It is quite 
well-known that if the M -spectrum of a connected graph G just contains two distinct 
eigenvalues for at least one M ∈ {A, Q, L, D}, then G is a complete graph. Surprisingly, 
the situation for M = E is quite different, as we are about to show.

Lemma 3.3 (Cauchy’s Interlacing Theorem). Let R be a real symmetric n ×n matrix and 
let S be a principal submatrix of R of order m. Then, for i = 1, 2, . . . , m,

λn−m+i(R) ≤ λi(S) ≤ λi(R),

where λ1(R) ≥ λ2(R) ≥ · · · ≥ λn(R) and λ1(S) ≥ λ2(S) ≥ · · · ≥ λm(S) are the 
eigenvalues of R and the eigenvalues of S respectively.

An (u, v)-path of G is called a diametrical path if its length is dG(u, v) = diam(G).

Lemma 3.4. Let G be a connected graph with order n and E(G) being irreducible. Then 
G has two distinct E-eigenvalues if and only if E(G) = Jn − In, i.e., G is the complete 
graph Kn.

Proof. If G = Kn, then E(G) = E(Kn) = Jn − In = A(Kn), which is irreducible. Its 
spectrum just contain n − 1 with multiplicity 1 and −1 with multiplicity n − 1.

Suppose now E(G) irreducible with just two distinct eigenvalues. It will suffice to show 
that diam(G) = 1. In fact, if this is the case G is necessarily equal to Kn. Let Puv be 
a diametrical path with diametrical vertices u and v. By contradiction we assume that 
there exists a vertex w ∈ V (Puv) \ {u, v}. From Perron-Frobenius Theorem it follows 
that ξ1 ∈ spE(G) is an algebraically simple E-eigenvalue. According to the parity of 
Nuv := |V (Puv)| we distinguish the following cases:

Case 1: Nuv = 2k + 1. We show that E(G) contains a principal submatrix of order 3
with 3 different eigenvalues. This fact contradicts to Lemma 3.3.
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If dPuv
(u, w) = dPuv

(w, v), then dG(u, w) = dG(w, v) = k. If εG(w) = dG(w, v). 
Therefore, the principal submatrix indexed by the vertices u, v, w is similar (if not equal) 
to

M1 =
( 0 2k k

2k 0 k
k k 0

)

which has three distinct eigenvalues; namely (1 +
√

3)k, (1 −
√

3)k, and −2k.
If instead εG(w) > dG(w, v), the principal submatrix indexed by u, v, w is similar to

M2 =
( 0 2k 0

2k 0 0
0 0 0

)
.

Such matrix also has three distinct eigenvalues; namely, 2k, 0, and −2k.
Suppose finally dPuv

(u, w) �= dPuv
(w, v). Without loss of generality, we can assume

dG(w, v) = a > dG(w, u).

In this case, the principal submatrix indexed by the vertices u, v, w is similar to

M3 =
( 0 2k 0

2k 0 a
0 a 0

)
, where k < a < 2k.

The matrix M3 too has three distinct eigenvalues; namely 
√

4k2 + a2, 0, and −
√

4k2 + a2.
Case 2: Nuv = 2k. Arguing as for Case 1, the principal submatrix corresponding 

to the rows & columns indexed by u, v, w always has three eigenvalues, contradicting 
Lemma 3.3. �
Lemma 3.5. Let G be a connected graph with order n and diameter d ≥ 2. The eccentrity 
matrix E(G) is reducible and has two distinct E-eigenvalues if and only if there exists an 
integer r ≥ 2 such that r|n and, after possibly re-labeling the vertex set,

E(G) = dIn
r
⊗ (Jr − Ir),

where ⊗ denotes the Kronecker product. Moreover, the two distinct E-eigenvalues are 
equal to the following pair of integers:

ξ1 = d(r − 1) and ξ2 = −d. (5)

Proof. The proof of sufficiency is short and easy. Recalling that, for every pair (X, Y )
of n × n matrices,

λ ∈ sp(X) and μ ∈ sp(Y ) =⇒ λμ ∈ sp(X ⊗ Y ),
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the spectrum of the Kronecker product E(G) = dIn
r
⊗ (Jr − Ir) just contains the two 

eigenvalues defined in (5).
We now prove necessity by assuming that E(G) is reducible, and ξ1 > ξ2 are its 

only two distinct eigenvalues. Since Tr(E(G)) = 0, surely ξ1 > 0 > ξ2. After possibly 
re-labeling the vertex set, E(G) becomes a block diagonal matrix. More specifically,

E(G) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Xn1 O O · · · O O

O Xn2 O · · · O O
...

...
...

. . .
...

...
O O O · · · Xns−1 O

O O O · · · O Xns

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

where Xni
(1 ≤ i ≤ s) is an irreducible matrix and n1 + · · · + ns = n. Consequently, 

if a vertex u corresponds to a row of the block Xni
, then the same block contains the 

row related to each vertex v being at the largest distance from u. By sp(Xni
) ⊆ spE(G)

we deduce that ξ1 and ξ2 both belong to sp(Xni
) for each 1 ≤ i ≤ s. The Perron-

Frobenius Theorem implies that the multiplicity of ξ1 and ξ2 for Xni
are 1 and ni − 1

respectively; moreover, there exists an unit all-positive column vector in Rni such that 
Xni

α(i) = ξ1α(i). The matrix Xni
− ξ2I is symmetric and has rank 1. Consequently,

Xni
= ξ2I + (ξ1 − ξ2)α(i)α(i)�.

Since all elements on the principal diagonal of Xni
are null, then α(i) =

√
c · 1ni

, where 
c = −ξ2/(ξ1 − ξ2), and 1ni

∈ Rni is the all-ones column vector. Thereby,

Xni
= −ξ2(J − I)ni

,

leading to ξ1 = −ξ2(ni− 1) for each i = 1, . . . , s. In other words, n1 = · · · = ns := r ≥ 2; 
d = −ξ2; ξ1 = −d(r − 1) and E(G) = dIn

r
⊗ (Jr − Ir) as claimed. �

From Lemmas 3.4 and 3.5 we easily deduce the announced E-spectral characterization 
of r-antipodal graphs.

Theorem 3.6. Let (d, r) be a pair of positive integers with r ≥ 2. A connected graph 
G of order n = rh is r-antipodal with diameter d if and only if G has two distinct 
E-eigenvalues. If this is the case, the E-spectrum of G is given by

spE(G) =
{
d(r − 1) −d

h h(r − 1)

}
. (7)

The so-called Capobianco’s problem was formulated in 1980 (see [14]). It consists 
in seeking out a characterization for SC-graphs more useful than the equality between 
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radius and diameter. Theorem 3.6 goes precisely in that direction. It is worthwhile to 
notice that the E-spectrum (7) of an r-antipodal graph allows to uniquely determine its 
diameter, which is an E-cospectral invariant (see Lemma 4.2). Later on, such a fact will 
be beneficial for the E-spectral determination of r-antipodal graphs.

3.3. Further discussion on r-antipodal graphs

We now address another question on r-antipodal graphs.

Problem 2. Do r-antipodal graphs admit other characterizations besides Theorem 3.6?

Given any r-antipodal graph G, we say that the number r is the block index of G, and 
we shall sometimes denote it by γ(G). This number is determined by the A-eigenvalues 
of graphs, as the next proposition shows.

Proposition 3.7. [21, Theorem 3.5] Let G be a connected regular graph of order n and 
diameter d with distinct A-eigenvalues λ0 > λ1 > · · · > λk. Then G is an r-antipodal 
distance-regular graph if and only if k = d, and the distance-d graph Gd is constituted by 
disjoint copies of the complete graph Kr with

r = 2n
(

d∑
i=0

π0

πi

)−1

,

where πi (0 ≤ i ≤ d) is defined in (4).

Note that for both r-antipodal graphs and distance regular graphs with diameter d, 
the cardinality of

Gd(v) := {u ∈ V (G) | d(u, v) = d}

does not depend on v. We denote it by δd. If G is a distance-regular graph with inter-
section array {b0 b1 · · · bd−1; c1 c2 · · · cd}, then

δ∗d := δd = b0 b1 · · · bd−1

c1 c2 · · · cd
.

If G is r-antipodal, then r = γ(G) = δd + 1; hence, by Proposition 3.7,

δd = 2n
(

d∑
i=0

π0

πi

)−1

− 1.

The next proposition recaps many properties we got so far on antipodal and distance-
regular graphs.
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Proposition 3.8. Let G be a connected graph with order n.

(i) If G is r-antipodal, then the block index γ(G) = r divides n and γ(G) = δd + 1.
(ii) If G is a distance-regular graph, then γ(G) = δ∗d + 1.
(iii) A distance-regular graph has two distinct E-eigenvalues if and only if there exists a 

vertex labeling such that E(G) = dIn/(δd+1) ⊗ (Jδd+1 − Iδd+1) with (δd + 1)|n.
(iv) A distance-regular graph G with two distinct E-eigenvalues is r-antipodal. Particu-

larly, G is 2-antipodal if and only if δd = 1 if and only if n =
∑d

i=0
π0
πi

.

We now give some examples of r-antipodal graphs, starting from some somehow ex-
tremal cases. As already observed, if a graph G is n-antipodal, then necessarily G = Kn. 
Let now r < n.

Example 3.3.1. d ≥ 2 and r = 2.

By definition, 2-antipodal graphs are precisely the even graphs. Some examples are: 
the cycle C2t, the hypercube Qt, the cocktail-party graph CP (t), the prism K2 × C2t, 
the anti-prism A4t+2 [25] and the graphs mentioned in Section 8. By means of the 
Cartesian product, we can construct many other examples. In fact, a graph G ×H is 
2-antipodal if and only if both G and H are 2-antipodal [25]. For instance, all graphs of 
type C2t ×Qt × CP (t) ×A2t+2 are 2-antipodal. Another peculiar family of 2-antipodal 
graphs are the so-called harmonic 2-antipodal graphs described in [25].

Example 3.3.2. d = 2 and r ≥ 2.

r-antipodal graphs with diameter 2 are precisely the regular complete k-partite graphs. 
In order to see this, suppose that G is an r-antipodal with diameter 2. By Lemmas 3.4
and 3.5, its vertex set can be labeled in such a way that E(G) = 2In/a ⊗ (Ja − Ia) for a 
suitable a > 1 dividing n = |V (G)|.

Let u and v be two distinct vertices of G. Since G is connected and d = ε(u) = ε(v) =
2, if εuv = 0, then duv = 1. Thereby, the distance matrix D(G) has the following form:

D(G) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2(Ja − Ia) Ja Ja · · · Ja Ja
Ja 2(Ja − Ia) Ja · · · Ja Ja
...

...
...

. . .
...

...
Ja Ja Ja · · · 2(Ja − Ia) Ja
Ja Ja Ja · · · Ja 2(Ja − Ia)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The regular complete k-partite graph Ka,a,...,a has such a distance matrix. Since Jin and 
Zhang have proved in [34] that the complete k-partite graph Kn1,n2,...,nk

is determined 
by its D-spectrum, then we conclude that G = Ka,a,...,a.

Example 3.3.3. Distance-regular graphs.
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Table 5
Cubic distance-regular graphs.

Graph n Intersection array block index
Tetrahedral graph 4 {3; 1} 4
Utility graph 6 {3, 2; 1, 3} 3
Cube 8 {3, 2, 1; 1, 2, 3} 2
Petersen graph 10 {3, 2; 1, 1} 7
Heawood graph 14 {3, 2, 2; 1, 1, 3} 5
Pappus graph 18 {3, 2, 2, 1; 1, 1, 2, 3} 3
Desargues graph 20 {3, 2, 2, 1, 1; 1, 1, 2, 2, 3} 2
Dodecahedral graph 20 {3, 2, 1, 1, 1; 1, 1, 1, 2, 3} 2
Coxeter graph 28 {3, 2, 2, 1; 1, 1, 1, 2} 7
Tutte-Coxeter graph 30 {3, 2, 2, 2; 1, 1, 1, 3} 9
Foster graph 90 {3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3} 3
Biggs-Smith graph 102 {3, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 3} 9
Tutte 12-cage 106 {3, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 3} 33

Some 2-antipodal distance-regular graphs can be found with the aid of Proposi-
tion 3.8(iv). We can consider the Taylor graphs (see [7, Section 1.5]), i.e., distance-regular 
graphs with intersection array {k, μ, 1; 1, μ, k}; the Hadamard graphs (the explicit con-
struction is in [7, Section 1.8]; the intersection array is {2μ, 2μ −1, μ, 1; 1, μ, 2μ −1, 2μ}), 
and Johnson graphs of type J(2e, e) (see [7, Section 9.1]). The next proposition shows 
that all 2-antipodal Johnson graphs are of this type.

Proposition 3.9. The Johnson graph J(n, e) is 2-antipodal if and only if n = 2e.

Proof. By [7, Theorem 9.1.2] we know that the Johnson graph J(n, e) has diameter 
d = min{e, n − e} and intersection array

{(e− 1)(n− e− 1), (e− 2)(n− e− 2), . . . , (e− (d− 1))(n− e− (d− 1)); 12, 22, . . . , d2}.

Such graph is 2-antipodal if and only if δ∗d = 1. This happens if and only if

e− d + 1 = n− e− d + 1 = 1,

from which we deduce that d = e and n = 2e, as claimed. �
Since the only 2-regular connected graphs are the cycles, the only 2-regular connected 

graphs which are additionally r-antipodal are C3 and the even cycles C2t (t ≥ 2). In 
the E-spectrum of Cn we only find −1 and 2 (resp. t and −t) if n = 3 (resp. n = 2t). 
3-regular connected graphs (also known as cubical distance-regular graphs) have been 
detected by Biggs et al. in [5]. We have framed their main result in the next lemma.

Lemma 3.10. [5] There are just thirteen 3-distance-regular graphs: the tetrahedral graph 
K4, the utility graph K3,3, the cube, the Petersen graph, the Heawood graph, the Pappus 
graph, the Desargues graph, the dodecahedral graph, the Coxeter graph, the Tutte-Coxeter 
graph, the Biggs-Smith graph, the Foster graph and the Tutte 12-cage, as summarized in 
Table 5.
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The following result follows from Lemma 3.5 and Table 5.

Corollary 3.11. There are just eight cubic r-antipodal distance-regular graphs: the tetra-
hedral graph K4; the utility graph K3,3; the cube; the Pappus graph; the Desargues graph; 
the dodecahedral graph; the Coxeter graph; and the Foster graph.

4. Constructions of E-cospectral graphs

Solving the spectral determination problem for a class of graphs G with respect to a 
given matrix M tantamounts to detecting all graphs which are M -cospectral to a given 
graph G ∈ G. The task of identifying M -cospectral graphs is made easier if we have 
restrictive M -cospectral invariants at our disposal. Our aim in this section is to identify 
E-cospectral invariants.

Fig. 3. The smallest pair of E-cospectral trees.

Since the order |V (G)| of a graph G is equal to the cardinality of spE(G), the following 
lemma is immediate.

Lemma 4.1. The order of a graph G is an E-cospectral invariant.

As shown in Fig. 3, the smallest order of E-cospectral trees is 8. By looking at the 
graphs shown in Fig. 1, we see that a tree with 4 edges is E-cospectral to a non-
bipartite graph with 5 edges, and immediately deduce that the number of edges is not 
an E-cospectral invariant. Furthermore, while it is still unclear whether the D-spectrum 
determines bipartiteness [36], the same pair of graphs shows that surely this is not the 
case for the E-spectrum.

We now focus on the E-cospectral invariants related to r-antipodal graphs. There 
exists just one n-antipodal graph of order n: the complete graph Kn. By Lemmas 3.4
and 3.5, it is straightforward to check that Kn is determined by its E-spectrum. More 
generally, when 2 ≤ r ≤ n, the following lemma holds.

Lemma 4.2. Let G be a r-antipodal graph of order n. Then the E-cospectral graphs of G
are r-antipodal graphs with same order and diameter.

Proof. Let d be the diameter of G. If a graph H is E-cospectral to G, H has n vertices 
like G by Lemma 4.1. Moreover spE(H) is given by (7). Theorem 3.6 in particular says 
that H is r′ antipodal, with
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Fig. 4. The Hadamard graph H(8), the Wells graph W (32) and the Taylor graph T (12).

(r′−1)diam(H) = ξ1(H) = ξ1(G) = (r−1)d and −diam(H) = ξ2(H) = ξ2(G) = −d,

from which we immediately deduce that diam(H) = d and r′ = r. �
The following result easily comes from Theorem 3.6 and Lemma 4.2.

Theorem 4.3. All r-antipodal graphs (r ≥ 2) with the same order and diameter are E-
cospectral.

Corollary 4.4.

(i) In Table 5, the Desargues graph and the dodecahedral graph are E-cospectral graphs. 
In fact, both graphs have order 20, diameter 5 and block index 2.

(ii) The Hadamard graph H(8) with intersection array {8, 7, 4, 1; 1, 4, 7, 8} and the Wells 
graph W (32) with intersection array {5, 4, 1, 1; 1, 1, 4, 5} are E-cospectral. In fact, 
both graphs have order 32, diameter 4 and block index 2.

(iii) The Taylor graphs T (n) with intersection array {k, μ, 1; 1, μ, k} and the complement 
of the rook’s graph K2 ×Kk+1 with intersection array {k, k− 1, 1; 1, k− 1, k} are E-
cospectral. In fact, both graphs have order n = 2(k+1), diameter 3 and block index 2.

The Hadamard graph H(8) and the Wells graph W (32) are depicted in Fig. 4 [47]
together with the Taylor graph T (12) with intersection array {5, 2, 1; 1, 2, 5}. The graph 
T (12) is E-cospectral to K2 ×K6 with intersection array {5, 4, 1; 1, 4, 5}.

In order to construct E-cospectral graphs, we can employ products of graphs. Recall 
that the lexicographic product G ◦ H of two graphs G and H is defined as follows: 
V (G ◦ H) = V (G) × V (H), and two distinct vertices (g, h) and (g′, h′) of G ◦ H are 
adjacent if and only if either gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H). An elementary 
argument shows G ◦ H is connected if and only if G is connected. The next lemma 
describes how distances of vertices in G, H and G ◦H are related.
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Lemma 4.5. [32] Let G and H be two graphs, and let (g, h) and (g′, h′) be two vertices of 
G ◦H. Then

dG◦H((g, h), (g′, h′)) =

⎧⎪⎨
⎪⎩

dG(g, g′) if g �= g′;
dH(g, g′) if g = g′ and degG(g) = 0;
min{dH(h, h′), 2} if g = g′ and degG(g) �= 0.

Lemma 4.6. Let G be an r-antipodal graph with order m ≥ 2, diam(G) = d and γ(G) = r. 
Let H be a connected graph with order n ≥ 2. Then G ◦H is a SC-graph whose diameter 
is

diam(G ◦H) = max { d,min{2,diam(H)} } . (8)

Proof. We can assume that

V (G ◦H) = {(ui, vj)|ui ∈ V (G), vj ∈ V (H), 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

In our hypotheses, the degree of any vertex of G and H is at least one, and

min{dH(vj , vk), 2} =
{

1 if vjvk ∈ E(H),
2 if vjvk /∈ E(H),

since H is connected. This, together with Lemma 4.5, leads to determine the generic 
element of the distance matrix D(G ◦ H), which is

dG◦H((ui, vj), (uh, vk)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = h, j = k;
1 if i = h, j �= k and vjvk ∈ E(H);
2 if i = h, j �= k and vjvk /∈ E(H);
dG(ui, uh) if i �= h.

(9)

Equation (8) now follows easily. �
It is worth mentioning that Equation (8) or Equation (9) alone suffices to infer that 

diam(G ◦H) = 1 if and only if G and H are both complete and |V (G ◦H)| > 1.

Lemma 4.7. Let G be an r-antipodal graph with order m = rm′ ≥ 2, diam(G) = d ≥ 3
and γ(G) = r. Let H be a connected graph with order n ≥ 2. Then there exists a vertex 
labeling for V (G ◦H) such that E(G ◦H) = Im′ ⊗ ((Jr − Ir) ⊗ dJn). The E-spectrum of 
G ◦H is

spE(G ◦H) =
{
dn(r − 1) 0 −dn

m′ m(n− 1) m′(r − 1)

}
. (10)
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Proof. Note first that r divides m by definition of r-antipodal graph, and m′ = m/r > 1, 
since otherwise G should be complete, but we are supposing d ≥ 3. Furthermore, for a 
fixed vertex ui in G, there exist r − 1 vertices uct ∈ V (G) (1 ≤ t ≤ r − 1) such that 
dG(ui, uct) = d. Since d ≥ 3, by Equation (9) it immediately follows that

εG◦H((ui, vj), (uh, vk)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if i = h, j = k;
0 if i = h, j �= k, vjvk ∈ E(H);
0 if i = h, j �= k, vjvk /∈ E(H);
0 if i �= h, uh /∈ {uc1 , . . . , ucr−1};
d if i �= h, uh ∈ {uc1 , . . . , ucr−1}.

(11)

We now consider a vertex labeling for G such that

Gd(urh+1) = {urh+2, . . . , urh+r}, ∀h = 0, . . . ,m′ − 1.

We also order the vertices of G ◦H in a ‘lexicographic’ way, i.e.

(ui, vj) precedes (uh, vk) ⇐⇒ i < h or i = h and j < k.

With this chosen ordering for the elements in V (G ◦H), we have

E(G ◦H) = Im′ ⊗ ((Jr − Ir) ⊗ dJn),

whose E-eigenvalues are of type λμν, where

λ ∈ sp(Im′) =
{

1
m′

}
; μ ∈ sp(Jr − Ir) =

{
r − 1 −1

1 r − 1

}
;

ν ∈ sp(dJn) =
{

0 dn

n− 1 1

}
.

Having shown that (10) holds, the proof is over. �
For a graph G, let [G]E be the set of its E-cospectral mates.

Theorem 4.8. For i = 1, 2, let Gi be an ri-antipodal graph with diameter at least 3, and 
let H1 and H2 any pair of connected graphs. If G2 ∈ [G1]E and H2 ∈ [H1]E , then G1 ◦H1
and G2 ◦H2 are E-cospectral.

Proof. By Lemma 4.1 we know that |G1| = |G2| := m, and |H1| = |H2| := n. Equalities 
r1 = r2 and diam(G1) = diam(G2) := d come from Lemma 4.2. After suitably labeling 
the vertex sets of G1 ◦H1 and G2 ◦H2, the matrices E(G1 ◦H1) and E(G2 ◦H2) are both 
equal to
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Im
r
⊗ ((Jr − Ir) ⊗ dJn)

by Lemma 4.7. Consequently, G1 ◦H1 and G2 ◦H2 share the same E-spectrum. �
Recall that the strong product G1 � G2 of the graphs G1 and G2 has vertex set 

{(u1, u2)|u1 ∈ V (G1), u2 ∈ V (G2)}, and two distinct pairs of vertices (u1, u2) and (v1, v2)
are adjacent if and only if one of the following conditions hold: i) u1 = v1 and u2 is 
adjacent to v2; ii) u2 = v2 and u1 is adjacent to v1; iii) u1 is adjacent to v1 and u2 is 
adjacent to v2.

Note that G1 �G2 ∼= G2 �G1 and G1 �G2 is connected if and only if G1 and G2 are 
connected [32].

Lemma 4.9. [44] Let G be an r-antipodal graph with order m, and diam(G) = d ≥ 3. Let 
H be a graph with order n ≥ 2. If d > diam(H), then G �H is a SC-graph with diameter 
d. Moreover, there exists a vertex labeling such that E(G �H) = Im

r
⊗ ((Jr − Ir) ⊗ dJn).

Theorem 4.10. Let G1 and G2 be E-cospectral r-antipodal graphs with diameter d, and 
H1 and H2 be E-cospectral connected graphs. If d > max{diam(H1), diam(H2)}, then 
G1 � H1 and G2 � H2 are E-cospectral.

Proof. Immediately, it follows from Lemmas 4.2 and 4.9. �
The following result follows from Theorems 4.8 and 4.10.

Proposition 4.11. Let G be an r-antipodal graph and H be a connected graph with 
diam(G) > diam(H) ≥ 2. Then G ◦H and G �H are E-cospectral graphs. Their common 
E-spectrum is given by (10), where m′ = m/r.

Due to Corollary 4.4, Theorems 4.8 and 4.10 and Proposition 4.11, we can construct 
some new E-cospectral graphs. Some of the graphs evoked in the next corollary are 
visualized in Fig. 4.

Corollary 4.12. Let H1 and H2 be the Desargues graph and the Dodecahedral graph re-
spectively. Then we can list the following pairs of E-cospectral graphs.

(i) H(8) ◦ T (12) and W (32) ◦K2 ×K6, H1 ◦ T (n) and H2 ◦K2 ×Kk+1.
(ii) K2 ×Kk+1 ◦ T1 and K2 ×Kk+1 ◦ T2, T (n) ◦ T1 and K2 ×Kk+1 ◦ T2.
(iii) T (n) � Km and K2 ×Kk+1 � Km, H(8) � T (n) and W (32) � K2 ×Kk+1.
(vi) H(8) ◦ T (n) and H(8) � T (n); W (32) ◦K2 ×Kk+1 and W (32) � K2 ×Kk+1.

5. Open problems

The first open problem we point out concerns the possible irreducibility of the E-
matrix. Proverbially, one of the most basic results of matrix theory applied to graphs 
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Fig. 5. A graft transformation.

is that the adjacency and distance matrix of connected graphs are both irreducible. 
Things go differently for the eccentricity matrix. As a matter of fact, E(Kn) = Jn − In

is irreducible, nevertheless, E(Ka,b) =
(

2(Ja − Ia) O
O 2(Jb − Ib)

)
is reducible. Thus, the 

following problem surely deserves some investigation.

Problem 3. For which connected graphs is the eccentricity matrix irreducible?

For the trees, the first two authors among others gave in [45] a complete answer.

Proposition 5.1. [45] The E-matrix of a tree is irreducible.

It is well-known that irreducible matrices have a Perron vector, whose components 
are all positive. The Perron vector is usually applied to inspect whether the spectral 
radius of graphs decreases or increases under a graft transformation. In order to recall 
its definition, we denote by NG(v) the set of the vertices adjacent to v in a connected 
graph G, and write NG[v] = NG(v) ∪ v. Fix some vertices v1, v2, . . . , vs in NG(v)\NG[u], 
where deg(v) ≥ 1 and u �= v; then consider the graph G∗ obtained from G by deleting 
the edges vvi and adding the edges uvi (1 ≤ i ≤ s) (see Fig. 5). The relations between 
the A-spectral radius and D-spectral radius of G and those of G∗ have been studied 
[43,46]. But a comparison between the E-spectral radii of G and G∗ is still to come. The 
ambitious scholar willing to approach the topic will realize that E(G) and E(G∗) may 
drastically differ.

Problem 4. Investigate the E-spectral radius of graphs under graft transformations.

Problem 5. Given a set S of graphs, find an upper bound for the E-spectral radius of 
graphs in S and characterize the graphs in which the maximal or minimal E-spectral 
radius is attained.

It is well-known that the coefficients of the A-polynomial of a graph G can be com-
puted through suitable topological invariants of its subgraphs. Such a result was first 
published in full generality by Sachs ([15, Theorem 1.3]). Thus, it is natural to ask 
whether a similar formula exists for the coefficients of the E-polynomial of a graph.
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Problem 6. Find the relations between the coefficients of the E-polynomial and the sub-
graphs of a graph.

Focusing our attention to r-antipodal graphs, we have shown that the diameter is 
determined by the E-spectrum in Section 3. For the general case, the corresponding 
problem is worth investigating.

Problem 7. Under what conditions is the diameter of a graph determined by E-spectrum?

We finally pose and revisit open problems related to antipodal graphs and SC-graphs. 
Let G be an even graph of order n and diameter d. Gobel and Veldman [25] showed that 
n ≥ 4d − 4 if G is a symmetric even graph. Furthermore, they constructed a subfamily 
of even graphs known in literature as harmonic even graphs. For the general case, they 
proposed the conjecture below, together with the subsequent problem.

Conjecture 3. [25] Let G be an even graph with order n and diameter d. Then n ≥ 4d −4.

Problem 8. [25] For each pair of integers (n, d) with n even, d ≥ 2 and n ≥ 4d − 4, is 
there a procedure to construct all even graphs of order n and diameter d?

As a generalization of the above problem, we think that the following problem deserves 
consideration as well.

Problem 9. For every pair of integers n, d ≥ 2, construct all the r-antipodal graphs with 
order n, diameter d and block index r|n.

In this paper, we mainly dealt with SC-graphs, i.e., graphs for which the first inequality 
in (1) is an equality. A graph G for which the second inequality in (1) is an equality are 
called peripheral. In other words, G is peripheral if and only if diam(G) = 2rad(G).

Problem 10. Determine a useful spectral characterization of peripheral graphs.
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