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The eccentricity matrix ε(G) of a graph G is constructed from the distance matrix of G
by keeping only the largest distances for each row and each column. This matrix can be 
interpreted as the opposite of the adjacency matrix obtained from the distance matrix by 
keeping only the distances equal to 1 for each row and each column. The ε-eigenvalues 
of a graph G are those of its eccentricity matrix ε(G). Wang et al. [24] proposed the 
problem of determining the maximum ε-spectral radius of trees with given order. In 
this paper, we consider the above problem of n-vertex trees with given diameter. The 
maximum ε-spectral radius of n-vertex trees with fixed odd diameter is obtained, and the 
corresponding extremal trees are also determined. Recently, Wei et al. [22] determined 
all connected graphs on n vertices of maximum degree less than n − 1, whose least 
eccentricity eigenvalues are in [−2

√
2, −2]. Denote by Sn the star on n vertices. For tree 

T with order n ≥ 3, it [22] was proved that εn(T ) ≤ −2 with equality if and only if 
T ∼= Sn . According to the above results, the trees of order n ≥ 3 with least ε-eigenvalues in 
[−2

√
2, 0) are only Sn . Motivated by [22], we determine the trees with least ε-eigenvalues 

in [−2 − √
13, −2

√
2).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider connected and simple graphs, and refer to Bondy and Murty [2] for notations and 
terminologies used but not defined here.

Let G be a graph with vertex set V (G) and edge set E(G). G − v (resp. G − uv) is the graph obtained from G by deleting 
vertex v together with incident edges (resp. edge uv ∈ E(G)). This notation is naturally extended if more than one vertex 
or edge is deleted. Similarly, G + uv is obtained from G by adding an edge uv /∈ E(G). If U ⊆ V (G), then we write G[U ]
to denote the induced subgraph of G with vertex set U and two vertices being adjacent if and only if they are adjacent in 
G . A pendant vertex is the vertex of degree 1 and a supporting vertex is the neighbor of a pendant vertex. A pendant edge is 
an edge which is incident to a supporting vertex and a pendant vertex. Denote by Pn, Cn, Sn and Kn the path, cycle, star 
and complete graph on n vertices, respectively. An acyclic graph is one that contains no cycles. A connected acyclic graph 
is called a tree. If the tree is nontrivial, a vertex of degree one is called a leaf of the tree. A caterpillar tree is a tree with a 
single path containing at least one endpoint of every edge. For a real number x, denote by 	x
 the greatest integer no more 
than x, and by �x� the least integer no less than x. We may denote the n × n identity matrix by In .

* Corresponding author.
E-mail addresses: hexc2018@qq.com (X. He), lulugdmath@163.com (L. Lu).
https://doi.org/10.1016/j.disc.2021.112662
0012-365X/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.disc.2021.112662
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2021.112662&domain=pdf
mailto:hexc2018@qq.com
mailto:lulugdmath@163.com
https://doi.org/10.1016/j.disc.2021.112662


X. He and L. Lu Discrete Mathematics 345 (2022) 112662
We denote the neighbors of vertex u and the degree of vertex u in graph G by NG(u) and dG (u), respectively. The 
distance dG(u, v) between vertices u and v is the length of a shortest path between them in G and the eccentricity of vertex 
u is defined as eG (u) = max{dG (u, v)|v ∈ V (G)}. Then the diameter of G , written as diam(G), is max{eG(u)|u ∈ V (G)}. 
A diametrical path is a path whose length is equal to the diameter of G .

Let M(G) be an n × n matrix closely related to the structural theory of a graph G . Then the M-polynomial of G is 
defined as ϕM(G, λ) = det(λIn − M(G)), and the roots of ϕM(G, λ) = 0 are the M-eigenvalues. The M-spectrum SpecM(G) of 
G is a multiset consisting of the distinct M-eigenvalues together with their multiplicities, in which the maximum modulus 
is called the M-spectral radius of G . It is well-known that there are several classical graph matrices, including adjacency 
matrix, distance matrix, Laplacian matrix, signless Laplacian matrix, resistance matrix and so on.

Let D(G) be the distance matrix of G with (u, v)-entry (D(G))uv = dG(u, v). The eccentricity matrix ε(G) of G is con-
structed from the distance matrix D(G) by only retaining the eccentricities in each row and each column and setting the 
rest elements in the corresponding row and column to be zero. To be more precise, the (u, v)-entry of eccentricity matrix 
is defined as

(ε(G))uv =
{

(D(G))uv , if (D(G))uv = min{eG(u), eG(v)};

0, otherwise.

It is obvious that ε(G) is real and symmetric. Then the ε-eigenvalues of G are real, denoted by ε1(G) � ε2(G) � · · · � εn(G). 
Randić et al. [19,20] defined so-called D M A X matrix, which was renamed as the eccentricity matrix by Wang et al. [23]. 
Furthermore, Dehmer and Shi [6] studied the uniqueness of D M A X -matrix. Recently, Wang et al. [25] studied the graph 
energy based on the eccentricity matrix; Wang et al. [24] studied some spectral properties of the eccentricity matrix of 
graphs; Mahato et al. [16] studied the spectra of graphs based on the eccentricity matrix; Tura et al. [21] studied the 
eccentricity energy of complete multipartite graphs. Patel et al. [18] studied the irreducibility and the spectrum of the 
eccentricity matrix for particular classes of graphs, namely the windmill graphs, the coalescence of complete graphs and the 
coalescence of two cycles, and further estimated the eccentricity energy and inertia for the graphs of these classes. Lei et al. 
[11] characterized the graphs whose second least ε-eigenvalue is greater than −

√
15 − √

193; moreover it is shown that all 
these graphs are determined by their ε-spectrum. Wei et al. [22] determined the n-vertex trees with minimum ε-spectral 
radius. Furthermore, in [22], the authors identified all trees with given order and diameter having minimum ε-spectral.

Note that the adjacency matrix A(G) can be regarded as constructed from the distance matrix D(G) by selecting only 
the smallest distances for each row and each column, which correspond to adjacent vertices. From this point of view, the 
eccentricity matrix can be viewed as the opposite to the adjacency matrix [23] and these two matrices express two extremes 
of distance-like matrix.

The adjacency and distance matrices have been extensively studied and applied; see [1,3–5,7–10,12–14,17,26–28]. One 
of the most important facts is that the adjacency and distance matrices of connected graphs are irreducible, but it does 
not hold for all eccentricity matrices. Let T be a tree with at least two vertices. Recently, Wang et al. [23] proved that the 
eccentricity matrix of T is irreducible and they characterized the relationships between the A-eigenvalues and ε-eigenvalues 
of some graphs. Then ε-spectral radius ε1(T ) is positive and there is an eigenvector corresponding to ε1(T ), called Perron 
eigenvector, whose each coordinate is positive by Perron-Frobenius Theorem. Let M and N be two matrices with same order. 
If (N)i j � (M)i j for each i, j, we let N � M .

In view of more novel properties of eccentricity matrix, further discussion is needed. In particular, Wang et al. [24]
proposed the following problem.

Problem 1.1 ([24]). Which trees have the maximum ε-spectral radius?

Recently, Wei et al. [22] determined all connected graphs on n vertices of maximum degree less than n − 1, whose least 
eccentricity eigenvalues are in [−2

√
2, −2]. For tree T with order n ≥ 3, it [22] was proved that εn(T ) ≤ −2 with equality 

if and only if T ∼= Sn .
Motivated by the above results, we now propose the following problem.

Problem 1.2. For some given number c < −2
√

2, which trees with least eccentricity eigenvalues are in [c, −2
√

2)?

In this paper, we characterize the extremal trees having maximum ε-spectral radius with given order and odd diameter. 
On the other hand, we determine all the trees with least eccentricity eigenvalues in [−2 − √

13, −2
√

2).
Further on we need the following lemmas.

Lemma 1.3 ([15]). Let M be a Hermitian matrix of order s, and let N be a principle submatrix of M with order t. If λ1 � λ2 � · · ·� λs

list the eigenvalues of M and μ1 �μ2 � · · · �μt are the eigenvalues of N, then λi �μi � λs−t+i for 1 � i � t.

Lemma 1.4 ([15]). Let M and N be two nonnegative irreducible matrices with same order. If (N)i j � (M)i j for each i, j, then ρ(N) �
ρ(M) with equality if and only if M = N, where ρ(N) and ρ(M) denote the spectral radius of N and M, respectively.
2
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Fig. 1. Tree Da,b
n,d .

Fig. 2. Trees T and T̃ in Lemma 2.3.

Lemma 1.5 ([23]). The eccentricity matrix ε(T ) of a tree T with at least two vertices is irreducible.

Lemma 1.6 ([22]). Let G be an n-vertex connected graph with diameter d. Then ε1(G) � d and εn(G) � −d.

Lemma 1.7 ([22]). Let T be a tree with order n ≥ 3. Then εn(T ) � −2 with equality if and only if T ∼= Sn.

2. The maximum ε-spectral radius of trees with fixed odd diameter

In this section, we characterize the extremal trees with fixed odd diameter having maximum ε-spectral radius. Firstly, 
we present a few technical lemmas aiming to provide some fundamental characterizations of extremal trees.

Denote by Tn,d the set of trees with order n and diameter d. It is easy to check that the tree with diameter 1 is K2 and 
the tree with diameter 2 is a star with at least 3 vertices.

If d � 3 is odd, let Da,b
n,d be the tree obtained from Pd+1 = v0 v1 v2 · · · vd by attaching a pendant vertices to v1 and b

pendant vertices to vd−1, where a + b = n − d − 1 and b � a � 0, as depicted in Fig. 1.

Lemma 2.1 ([22]). Let Da,b
n,3 be in Tn,3 defined above, where a + b = n − 4 and b � a � 1. Then ε1(Da−1,b+1

n,3 ) < ε1(Da,b
n,3).

Our first main result in this section determines the unique tree among Tn,3, having the maximum ε-spectral radius.

Theorem 2.2. The maximum ε-spectral radius is achieved uniquely by tree D	 n−4
2 
,� n−4

2 �
n,3 among all the trees in Tn,3.

Proof. According to Lemma 2.1, it is easy to see that the maximum ε-spectral radius is achieved uniquely by tree Da,b
n,3

satisfying |b − a| ≤ 1 among all the trees in Tn,3.
This completes the proof. �

Lemma 2.3. Let T be in Tn,d with a diametrical path Pd+1 = v0 v1 v2 · · · vd (d � 5 is odd), and let T j be the connected component of 
T − E(Pd+1) containing v j, j ∈ {0, 1, . . . , d}. Assume there exists a vertex u1 ∈ V (Ti) (2 ≤ i ≤ d−1

2 ) such that dTi (vi, u1) = eTi (vi) �
2 (obviously, u1 is a pendant vertex). Denote the unique neighbor of u1 by u and all neighbors of u by u0, u1, . . . , us with dT (u0) � 2
and dT (u j) = 1 for 1 � j � s (see Fig. 2). Let

T̃ = T − uu1 + u1 v1.

Then ε1(T ) ≤ ε1(T̃ ), with equality if and only if dTi (vi, u1) = eTi (vi) = i.

Proof. It is easy to check that eT (w) = eT̃ (w) for each vertex w ∈ V (T ) \ {u1}, and dT (w, w ′) = dT̃ (w, w ′) for {w, w ′} ⊆
V (T ) \ {u1}. By the definition of eccentricity matrix, the (w, w ′)-entry of ε(T ) is equal to the (w, w ′)-entry of ε(T̃ ) for each 
{w, w ′} ⊆ V (T ) \ {u1}.

For w ∈ ⋃
0≤ j≤ d−1

2
V (T j), note that

dT (u1, w) ≤ dT (u1, v d−1 ) + dT (w, v d−1 ) < min{eT (w), eT (u1)},

2 2

3
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Fig. 3. Trees T and T̃ in Lemma 2.4.

dT̃ (u1, w) ≤ dT̃ (u1, v d−1
2

) + dT̃ (w, v d−1
2

) < min{eT̃ (w), eT̃ (u1)}.

Hence, (ε(T ))u1 w = 0 = (ε(T̃ ))u1 w for w ∈ ⋃
0≤ j≤ d−1

2
V (T j).

We proceed to consider the following two possible cases.

Case 1. eTi (vi) < i

In this case, for w ∈ ⋃
d+1

2 ≤ j≤d V (T j), we have

eT (u1) = dT (u1, vd) ≥ dT (u1, w),

eT (w) = dT (v0, w) > dT (u1, w).

By the definition of eccentricity matrix, if dT (u1, vd) > dT (u1, w), then (ε(T ))u1 w = 0. If dT (u1, vd) = dT (u1, w), then 
(ε(T ))u1 w = dT (u1, w). Hence, we have (ε(T ))u1 w ≤ dT (u1, w).

On the other hand, for w ∈ ⋃
d+1

2 ≤ j≤d V (T j), we have

eT̃ (u1) = dT̃ (u1, vd) = d ≥ dT̃ (u1, w),

eT̃ (w) = dT̃ (v0, w) = dT̃ (u1, w).

By the definition of eccentricity matrix, we have (ε(T̃ ))u1 w = dT̃ (u1, w).
It is easy to see that dT (u1, w) < dT̃ (u1, w). Hence, for w ∈ ⋃

d+1
2 ≤ j≤d V (T j), we have (ε(T ))u1 w < (ε(T̃ ))u1 w .

Case 2. eTi (vi) = i.

In this case, for w ∈ ⋃
d+1

2 ≤ j≤d V (T j), we have dT (u1, w) = eT (w) = eT̃ (w) = dT̃ (u1, w). Hence, (ε(T ))u1 w = (ε(T̃ ))u1 w .

Together with Cases 1 and 2, we have ε(T ) � ε(T̃ ), with equality if and only if dTi (u1, vi) = i. By Lemmas 1.4 and 1.5, 
we obtain ε1(T ) � ε1(T̃ ), with equality if and only if dTi (u1, vi) = i.

This completes the proof. �
Lemma 2.4. Given an n-vertex caterpillar tree T , Pd+1 = v0 v1 v2 · · · vd, (d � 5 is odd) is a diametrical path of T . Assume dT (vi) ≥ 3
(2 ≤ i ≤ d−1

2 ). Moving a pendant edge, say viu from vi to v1 yields the tree ̃T (see Fig. 3). Then ε1(T ) < ε1(T̃ ).

Proof. It is obvious that dT (w, w ′) = dT̃ (w, w ′) for {w, w ′} ⊆ V (T ) \ {u} and eT (w) = eT̃ (w) for w ∈ V (T ) \ {u}. By the 
definition of eccentricity matrix, we have (ε(T ))w w ′ = (ε(T̃ ))w w ′ for any {w, w ′} ⊆ V (T ) \ {u}.

If w is a pendant neighbor of vd−1 (may be vd), then dT (u, w) = d − i + 1 = eT (u) and dT̃ (u, w) = d = eT̃ (u). Hence, 
(ε(T ))uw = d − i + 1 < d = (ε(T̃ ))uw . If w is not a pendant neighbor of vd−1, then we have (ε(T ))uw < min{eT (u), eT (w)}. 
Thus, (ε(T ))uw = 0 � (ε(T̃ ))uw .

Clearly, ε(T ) � ε(T̃ ) and ε(T ) �= ε(T̃ ). By Lemmas 1.4 and 1.5, we obtain ε1(T ) < ε1(T̃ ). �
In the following, let �(d) := ( d+1

2 )2 + ( d+3
2 )2 + · · · + (d − 1)2 = d(d−1)(7d−5)

24 .

Lemma 2.5. For odd d � 5, ε1(Da,b
n,d) is the largest root of equation Fa,b(t) = 0, where

Fa,b(t) = t4 −
[
�(d)(n − d + 1) + (a + 1)(b + 1)d2

]
t2 + (a + 1)(b + 1)(�(d))2.

Proof. Choose a diametrical path Pd+1 = v0 v1 v2 · · · vd in Da,b
n,d . Denote by U = {v0, u1, · · · ua} the set of pendant neighbors 

of v1 and let W = {vd, w1, · · · wb} be the set of pendant neighbors of vd−1 in Da,b
n,d . By definition, the eccentricity matrix 

ε(Da,b
) is equal to
n,d

4
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 v1 · · · v d−3
2

v d−1
2

v d+1
2

v d+3
2

· · · vd−1 vd u1 · · · ua w1 · · · wb

v0 0 0 · · · 0 0 d+1
2

d+3
2 · · · d − 1 d 0 · · · 0 d · · · d

v1 0 0 · · · 0 0 0 0 · · · 0 d − 1 0 · · · 0 d − 1 · · · d − 1
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

v d−3
2

0 0 · · · 0 0 0 0 · · · 0 d+3
2 0 · · · 0 d+3

2 · · · d+3
2

v d−1
2

0 0 · · · 0 0 0 0 · · · 0 d+1
2 0 · · · 0 d+1

2 · · · d+1
2

v d+1
2

d+1
2 0 · · · 0 0 0 0 · · · 0 0 d+1

2 · · · d+1
2 0 · · · 0

v d+3
2

d+3
2 0 · · · 0 0 0 0 · · · 0 0 d+3

2 · · · d+3
2 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

vd−1 d − 1 0 · · · 0 0 0 0 · · · 0 0 d − 1 · · · d − 1 0 · · · 0

vd d d − 1 · · · d+3
2

d+1
2 0 0 · · · 0 0 d · · · d 0 · · · 0

u1 0 0 · · · 0 0 d+1
2

d+3
2 · · · d − 1 d 0 · · · 0 d · · · d

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

ua 0 0 · · · 0 0 d+1
2

d+3
2 · · · d − 1 d 0 · · · 0 d · · · d

w1 d d − 1 · · · d+3
2

d+1
2 0 0 · · · 0 0 d · · · d 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

wb d d − 1 · · · d+3
2

d+1
2 0 0 · · · 0 0 d · · · d 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let x be a Perron eigenvector corresponding to ρ := ε1(Da,b
n,d), whose coordinate with respect to vertex v is xv . Since 

ρxu = d+1
2 xv d+1

2

+ d+3
2 xv d+3

2

+ · · · + (d − 1)xvd−1 + dxvd + d 
∑b

i=1 xwi for each u ∈ U , we can get xu = xu′ for {u, u′} ⊆ U . 

Similarly, xw = xw ′ for {w, w ′} ⊆ W . Then we obtain

ρxu = d + 1

2
xv d+1

2

+ d + 3

2
xv d+3

2

+ · · · + (d − 1)xvd−1 + (b + 1)dxw;

ρxw = (a + 1)dxu + (d − 1)xv1 + (d − 2)xv2 + · · · + d + 1

2
xv d−1

2

;
ρxv1 = (b + 1)(d − 1)xw;

...

ρxv d−1
2

= (b + 1) · d + 1

2
xw;

ρxvd−1 = (a + 1)(d − 1)xu;
...

ρxv d+1
2

= (a + 1) · d + 1

2
xu,

for any u ∈ U , w ∈ W .
Hence,

ρ2xu = ρ
[d + 1

2
xv d+1

2
+ d + 3

2
xv d+3

2
+ · · · + (d − 1)xvd−1 + (b + 1)dxw

]
= (a + 1)(

d + 1

2
)2xu + (a + 1)(

d + 3

2
)2xu + · · · + (a + 1)(d − 1)2xu + (b + 1)dρxw

= (a + 1)�(d)xu + (b + 1)dρxw

and

ρ2xw = ρ
[
(a + 1)dxu + (d − 1)xv1 + (d − 2)xv2 + · · · + d + 1

2
xv d−1

2

]
= (a + 1)dρxu + (b + 1)(d − 1)2xw + (b + 1)(d − 2)2xw + · · · + (b + 1)(

d + 1
)2xw
2

5
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= (a + 1)dρxu + (b + 1)�(d)xw .

That is,

ρ2xu − (a + 1)�(d)xu − (b + 1)dρxw = 0,

−(a + 1)dρxu + ρ2xw − (b + 1)�(d)xw = 0.

Since xu �= 0 and xw �= 0, ρ is the largest root of∣∣∣∣ t2 − (a + 1)�(d) −(b + 1)dt
−(a + 1)dt t2 − (b + 1)�(d)

∣∣∣∣ = 0.

By calculation and the fact a + b = n − d − 1, we have

0 =
[
t2 − (a + 1)�(d)

][
t2 − (b + 1)�(d)

]
− (a + 1)(b + 1)d2t2

= t4 −
[
(a + 1)�(d) + (b + 1)�(d) + (a + 1)(b + 1)d2

]
t2 + (a + 1)(b + 1)(�(d))2

= t4 −
[
�(d)(n − d + 1) + (a + 1)(b + 1)d2

]
t2 + (a + 1)(b + 1)(�(d))2.

For fixed odd d ≥ 5, let Fa,b(t) = t4 −
[
�(d)(n − d + 1) + (a + 1)(b + 1)d2

]
t2 + (a + 1)(b + 1)(�(d))2. Then ρ is the largest 

root of equation Fa,b(t) = 0. �
Lemma 2.6. For odd d � 5, ε1(D0,n−d−1

n,d ) �= �(d)
d .

Proof. Suppose to the contrary that there exist some n and odd d such that ε1(D0,n−d−1
n,d ) = �(d)

d . Then by Lemma 2.5, we 
have

0 = F0,n−d−1(
�(d)

d
)

= (
�(d)

d
)4 − [

�(d)(n − d + 1) + (n − d)d2](�(d)

d
)2 + (n − d)(�(d))2

= (�(d))2

d4

[
(�(d))2 − (�(d)(n − d + 1) + (n − d)d2)d2 + (n − d)d4

]
= (�(d))2

d4

[
(�(d))2 − �(d)(n − d + 1)d2

]
= (�(d))3

d4

[
�(d) − (n − d + 1)d2

]
= (�(d))3

d4

[d(d − 1)(7d − 5)

24
− (n − d + 1)d2

]
= (

�(d)

d
)3

[ (d − 1)(7d − 5)

24
− (n − d + 1)d

]
.

Hence, (d−1)(7d−5)
24 = (n − d + 1)d, i.e., (d − 1)(7d − 5) = 24(n − d + 1)d. Note that d − 1 and d are relatively prime. Therefore, 

we have d|7d − 5. Clearly, 7d−5
d ≤ 6. Combining d ≥ 5 and d is odd, we have d = 5. Substituting d = 5 to (d − 1)(7d − 5) =

24(n − d + 1)d, we have n = 5, which contradicts n ≥ d + 1 = 6. Thus for odd d � 5, ε1(D0,n−d−1
n,d ) �= �(d)

d . �
Our next main result in this section determines the unique tree among Tn,d with odd d � 5, having the maximum 

ε-spectral radius.

Theorem 2.7. Let T be in Tn,d with odd d � 5. Then

ε1(T ) ≤ max
{
ε1(D0,n−d−1

n,d ), ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d )

}
with equality only if T ∼= D0,n−d−1

n,d or D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d . Especially, if n − d − 1 ≥ 2, we have ε1(D0,n−d−1

n,d ) �= ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ). 

Hence, for odd d ≥ 5, the extremal tree with maximum ε-spectral radius in Tn,d is unique.
6
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Proof. Assume that T is the tree with maximum ε-spectral radius among Tn,d with odd d � 5. By making frequent use of 
Lemmas 2.3 and 2.4, we obtain that T is isomorphic to some Da,b

n,d , where b ≥ a ≥ 0. For brevity, let ρ := ε1(T ). If ρ <
�(d)

d , 

then we have T ∼= D0,n−d−1
n,d . Otherwise, 1 ≤ a ≤

⌊
n−d−1

2

⌋
≤

⌈
n−d−1

2

⌉
≤ b. By Lemma 2.5, we have

−Fa−1,b+1(ρ) = Fa,b(ρ) − Fa−1,b+1(ρ) = (b + 1 − a)[(�(d))2 − d2ρ2] > 0.

Therefore, Fa−1,b+1(ρ) < 0 then ρ = ε1(Da,b
n,d) = ε1(T ) < ε1(Da−1,b+1

n,d ), a contradiction. If ρ = �(d)
d , then by Lemma 2.6, we 

have 1 ≤ a ≤
⌊

n−d−1
2

⌋
≤

⌈
n−d−1

2

⌉
≤ b. According to Lemma 2.5,

−Fa−1,b+1(ρ) = Fa,b(ρ) − Fa−1,b+1(ρ) = (b + 1 − a)[(�(d))2 − d2ρ2] = 0.

Therefore, ρ is a root of Fa−1,b+1(t). Clearly, ε1(Da−1,b+1
n,d ) = ρ = �(d)

d . By similar discussion, we obtain ε1(D0,n−d−1
n,d ) =

ρ = �(d)
d , which contradicts Lemma 2.6. Thus, ρ �= �(d)

d . If ρ >
�(d)

d , we have T ∼= D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d . Otherwise, 0 ≤ a ≤⌊

n−d−1
2

⌋
− 1 <

⌈
n−d−1

2

⌉
+ 1 ≤ b. According to Lemma 2.5,

−Fa+1,b−1(ρ) = Fa,b(ρ) − Fa+1,b−1(ρ) = (b − a − 1)[d2ρ2 − (�(d))2] > 0.

Therefore, Fa+1,b−1(ρ) < 0 then ρ = ε1(Da,b
n,d) = ε1(T ) < ε1(Da+1,b−1

n,d ), a contradiction. Thus, we have

ρ ≤ max
{
ε1(D0,n−d−1

n,d ), ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d )

}
with equality only if T ∼= D0,n−d−1

n,d or D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d .

Especially, if a + b ≥ 2, we claim ε1(D0,n−d−1
n,d ) �= ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ). Otherwise, let α := ε1(D0,n−d−1

n,d ) =
ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ). If α <

�(d)
d , as in the above proof, we have ε1(D0,n−d−1

n,d ) > ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ), a contradiction. If 

α >
�(d)

d , similarly, we have ε1(D0,n−d−1
n,d ) < ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ), a contradiction. Hence, for odd d ≥ 5, the extremal tree 

with maximum ε-spectral radius in Tn,d is unique. �
Remark 1. In Theorem 2.7, let n = 25 and d = 21. By a direct calculation, ε1(D0,3

25,21) ≈ 110.2597 and ε1(D1,2
25,21) ≈ 109.4423. 

Thus, ε1(D0,3
25,21) > ε1(D1,2

25,21). Note that, in this case, the values of n(= 25) and d(= 21) are very close. The following result 

shows that, when n is sufficiently large relative to d, ε1(D0,n−d−1
n,d ) < ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ).

Corollary 2.8. For fixed odd d ≥ 5, if n is sufficiently large, the maximum ε-spectral radius is achieved uniquely by tree D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d

among all the trees in Tn,d.

Proof. Let �(a, b) :=
[
�(d)(n − d + 1) + (a + 1)(b + 1)d2

]2 − 4(a + 1)(b + 1)(�(d))2. According to Lemma 2.5, by a direct 

calculation, (ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ))2 is equal to

1

2

[
�(d)(n − d + 1) + (

⌊
n − d − 1

2

⌋
+ 1)(

⌈
n − d − 1

2

⌉
+ 1)d2

]
+ 1

2

√
�(

⌊
n − d − 1

2

⌋
,

⌈
n − d − 1

2

⌉
) (2.1)

Hence, if n is sufficiently large, we have ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d ) > �(d)

d . In view of the proof of Theorem 2.7, we have T ∼=
D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d . �

Similarly, we have the following corollary.

Corollary 2.9. If there exists T in Tn,d with odd d � 5 such that ε1(T ) > �(d)
d , then

ε1(T ) ≤ ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d )
7
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Fig. 4. H p,q with p ≥ 0 and q ≥ 2.

with equality if and only if T ∼= D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d .

Together with Theorems 2.2 and 2.7, we obtain the following result.

Theorem 2.10. Let T be an n-vertex tree with odd diameter d. Then

ε1(T ) ≤ max
{
ε1(D0,n−d−1

n,d ), ε1(D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d )

}
with equality only if T ∼= D0,n−d−1

n,d or D

⌊
n−d−1

2

⌋
,
⌈

n−d−1
2

⌉
n,d . Especially, D

	 n−4
2 
,� n−4

2 �
n,3 is the unique tree maximizing ε-spectral radius 

among all the trees in Tn,3. In the case of odd d ≥ 5, the extremal tree with maximum ε-spectral radius is also unique.

3. Trees with least ε-eigenvalues in [−2 − √
13, −2

√
2)

In this section, we investigate trees with least ε-eigenvalues in [−2 − √
13, −2

√
2). Let εn(G) be the least ε-eigenvalue 

of a graph G with order n.
For p ≥ 0 and q ≥ 2, let H p,q be the graph obtained from the star S p+q+1 by attaching a pendant vertex to each of q

chosen pendant vertices (see Fig. 4). Let Jn×m and 0n×m be respectively all-one and the all-zero n ×m matrices. Let Jn = Jn×n , 
1n = Jn×1, and 0n = 0n×1.

The following is a key lemma that we will need in the proofs.

Lemma 3.1 ([4]). Let M, N, P and Q be respectively p × p, p × q, q × p and q × q matrices, where Q is invertible. Then∣∣∣∣ M N
P Q

∣∣∣∣ = |Q| · |M − NQ−1P|.

Lemma 3.2. For p ≥ 0 and q ≥ 2, the ε-polynomial of H p,q is

λp+1(λ2 + 4λ − 9)q−1[λ2 + (4 − 4q)λ − (9pq + 9q2 + 9 − 14q)
]
.

Proof. Let n = p + 2q + 1. Let w be the center of S p+q+1, A be the set of pendant neighbors of w , B be the set of non-
pendant neighbors of w , and C be the set of pendant vertices that are not neighbors of w . Then {w} ⋃ A 

⋃
B 

⋃
C is a 

partition of V (H p,q) (see Fig. 4), and with respect to this partition, we have

ε(H p,q) − λIn =

⎛⎜⎜⎝
−λ 0�

p 0�
q 21�

q
0p −λIp 0p×q 3Jp×q

0q 0q×p −λIq 3Jq − 3Iq

21q 3Jq×p 3Jq − 3Iq 4Jq − (λ + 4)Iq

⎞⎟⎟⎠ .

Let

A =

⎛⎜⎜⎜⎜⎝
1 0 −2 −31�

p ( 12
λ+4 − 3)1�

q

0 1 0 0�
p ( 9

λ+4 )1�
q

0 0 −λ 0�
p (− 6

λ+4 )1�
q

0p 1p 0p −λIp 0p×q

0q 1q 0q 0qp (−λ + 9
λ+4 )Iq

⎞⎟⎟⎟⎟⎠ ,B =

⎛⎜⎜⎜⎜⎝
−41�

q
−31�

q
21�

q
0p×q

−3Iq

⎞⎟⎟⎟⎟⎠
and

C = (
1q 0q 0q 0q×p 0q×q

)
.

8
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Then we have

|A − B[−(λ + 4)Iq]−1C|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 4q
λ+4 0 −2 −31�

p ( 12
λ+4 − 3)1�

q

− 3q
λ+4 1 0 0�

p ( 9
λ+4 )1�

q

2q
λ+4 0 −λ 0�

p (− 6
λ+4 )1�

q

0p 1p 0p −λIp 0p×q

−3
λ+4 1q 1q 0q 0q×p (−λ + 9

λ+4 )Iq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − 4q
λ+4 − 3p

λ
−2 −31�

p ( 12
λ+4 − 3)1�

q

− 3q
λ+4 1 0 0�

p ( 9
λ+4 )1�

q

2q
λ+4 0 −λ 0�

p (− 6
λ+4 )1�

q

0p 0p 0p −λIp 0p×q

−3
λ+4 1q 1q 0q 0q×p (−λ + 9

λ+4 )Iq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−λ)p

∣∣∣∣∣∣∣∣∣∣∣

1 − 4q
λ+4 − 3p

λ
−2 ( 12

λ+4 − 3)1�
q

− 3q
λ+4 1 0 ( 9

λ+4 )1�
q

2q
λ+4 0 −λ (− 6

λ+4 )1�
q

− 3
λ+4 1q 1q 0q (−λ + 9

λ+4 )Iq

∣∣∣∣∣∣∣∣∣∣∣

=(−λ)p

∣∣∣∣∣∣∣∣∣∣∣

1 − 4q
λ+4 − ( 12

λ+4 − 3)
3q

λ2+4λ−9
− 3p

λ
+ ( 12

λ+4 − 3)( λ+4
λ2+4λ−9

)q −2 ( 12
λ+4 − 3)1�

q

− 3q
λ+4 − 9

λ+4 · 3q
λ2+4λ−9

1 + 9q
λ2+4λ−9

0 ( 9
λ+4 )1�

q

2q
λ+4 + 6

λ+4 · 3q
λ2+4λ−9

− 6q
λ2+4λ−9

−λ (− 6
λ+4 )1�

q

0q 0q 0q (−λ + 9
λ+4 )1q

∣∣∣∣∣∣∣∣∣∣∣
=(−λ)p(

λ2 + 4λ − 9

λ + 4
)q(−1)q

∣∣∣∣∣∣∣∣∣
1 − 4q

λ+4 + 3λ
λ+4 · 3q

λ2+4λ−9
− 3p

λ
− 3qλ

λ2+4λ−9
−2

− 3q
λ+4 − 27q

(λ+4)(λ2+4λ−9)
1 + 9q

λ2+4λ−9
0

2q
λ+4 + 18q

(λ+4)(λ2+4λ−9)
− 6q

λ2+4λ−9
−λ

∣∣∣∣∣∣∣∣∣
=(−1)p+q+1λp+1(λ2 + 4λ − 9)q−1(λ + 4)−q · [λ2 + (4 − 4q)λ − (9pq + 9q2 + 9 − 14q)

]
.

Thus

|ε(H p,q) − λIn|

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −2 −31�
p −31�

q −41�
q

0 1 0 0�
p 0�

q −31�
q

0 0 −λ 0�
p 0�

q 21�
q

0p 0p 0p −λIp 0p×q 3Jp×q

0q 0q 0q 0q×p −λIq 3Jq − 3Iq

0q 0q 21q 3Jq×p 3Jq − 3Iq 4Jq − (λ + 4)Iq

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −2 −31�
p −31�

q −41�
q

0 1 0 0�
p 0�

q −31�
q

0 0 −λ 0�
p 0�

q 21�
q

0p 1p 0p −λIp 0p×q 0p×q

0q 1q 0q 0q×p −λIq −3Iq

1 0 0 0 −3I −(λ + 4)I

∣∣∣∣∣∣∣∣∣∣∣∣

q q q q×p q q

9
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=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −2 −31�
p ( 12

λ+4 − 3)1�
q −41�

q

0 1 0 0�
p

9
λ+4 1�

q −31�
q

0 0 −λ 0�
p − 6

λ+4 1�
q 21�

q
0p 1p 0p −λIp 0p×q 0p×q

0q 1q 0q 0q×p (−λ + 9
λ+4 )Iq −3Iq

1q 0q 0q 0q×p 0q×q −(λ + 4)Iq

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ A B

C −(λ + 4)Iq

∣∣∣∣∣∣
=| − (λ + 4)Iq| · |A − B[−(λ + 4)Iq]−1C| (by Lemma 3.1)

=(−1)p+1λp+1(λ2 + 4λ − 9)q−1[λ2 + (4 − 4q)λ − (9pq + 9q2 + 9 − 14q)
]
.

Note that the ε-polynomial of H p,q is |λIn − ε(H p,q)| = | − [ε(H p,q) − λIn]| = (−1)n|ε(H p,q) − λIn|. The result follows 
easily. �
Lemma 3.3. Let εn be the least ε-eigenvalue of H p,q, where n = p + 2q + 1. Then we have εn ≤ −2 − √

13, with equality if and only 
if one of the following conditions holds:

(i) p = 0 and 2 ≤ q ≤ 4;
(ii) p = 1 and q = 2 or 3;

(iii) p = 2 and q = 2.

Proof. In view of Lemma 3.2, it is easy to see that the distinct ε-eigenvalues of H p,q are 0, −2 ± √
13 and 1

2

[
(4q − 4) ±√

(4 − 4q)2 + 4(9pq + 9q2 + 9 − 14q)
]

. It follows that εn ≤ −2 − √
13. And we have

εn ∈
{

− 2 − √
13,

1

2

[
(4q − 4) −

√
(4 − 4q)2 + 4(9pq + 9q2 + 9 − 14q)

]}
.

By simplifying the following inequality

1

2

[
(4q − 4) −

√
(4 − 4q)2 + 4(9pq + 9q2 + 9 − 14q) ≥ −2 − √

13,

we obtain

4q(9p + 9q − 4
√

13 − 22) ≤ 0. (3.2)

Since q ≥ 2, we have 9p + 9q − 4
√

13 − 22 ≤ 0 if and only if εn = −2 − √
13. Note that p ≥ 0 and q ≥ 2, then 9p + 9q −

4
√

13 − 22 ≤ 0 implies 2 ≤ q ≤ 4. We distinguish the following four cases.

Case 1. p = 0.

In this case, it is easy to see that 9p + 9q − 4
√

13 − 22 ≤ 0 for 2 ≤ q ≤ 4.

Case 2. p = 1.

In this case, we have 9p + 9q − 4
√

13 − 22 ≤ 0 if and only if q = 2 or 3.

Case 3. p = 2.

In this case, it is easy to see that 9p + 9q − 4
√

13 − 22 ≤ 0 if and only if q = 2.

Case 4. p ≥ 3.

In this case, by calculation, we have 9p + 9q − 4
√

13 − 22 > 0 for q ≥ 2.
This completes the proof. �

Theorem 3.4. Let T be a tree with n ≥ 3 vertices. Then εn(T ) ∈ [−2 − √
13, −2

√
2) if and only if one of the following conditions 

holds:
10
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(i) T = P4;
(ii) T = D0,1

n,3;
(iii) T = H p,q for p = 0 and 2 ≤ q ≤ 4;
(iv) T = H p,q for p = 1 and q = 2 or 3;
(v) T = H p,q for p = 2 and q = 2.

Proof. Suppose εn(T ) ∈ [−2 − √
13, −2

√
2). Let d be the diameter of T . If d = 2, then T = Sn , by Lemma 2.5, εn(T ) = −2, 

a contradiction. If d = 5, then ε(P6) is a principle submatrix of ε(T ). By a direct calculation and Lemma 1.3, we have 
εn(T ) ≤ ε6(P6) ≈ −8.0902 < −2 − √

13, a contradiction. If d ≥ 6, then by Lemma 1.6, we have εn(T ) ≤ −6 < −2 − √
13, a 

contradiction. Thus d = 3 or 4.
First suppose that d = 3. Then T is some Da,b

n,3 with b ≥ a ≥ 0. If a = b = 0, then T = Da,b
n,3 = P4. By calculating, we have 

ε4(P4) = −4 ∈ [−2 − √
13, −2

√
2). This is (i). If a = 0, b = 1, then T = D0,1

n,3. By calculating, we have ε5(D0,1
n,3) ≈ −5.3752 ∈

[−2 − √
13, −2

√
2). This is (ii). Otherwise, D1,1

n,3 or D0,2
n,3 is an induced subgraph of T . Note that ε(D1,1

n,3) or ε(D0,2
n,3) is 

a principle submatrix of ε(T ). By a direct calculation, we obtain ε6(D1,1
n,3) ≈ −7.1231 and ε6(D0,2

n,3) ≈ −6.4694, and by 
Lemma 1.3, we have εn(T ) ≤ ε6(D1,1

n,3) < −2 − √
13 or εn(T ) ≤ ε6(D0,2

n,3) < −2 − √
13, a contradiction.

Next suppose that d = 4. Then D0,1
n,4 is an induced subgraph of T or T = H p,q for some p ≥ 0 and q ≥ 2. In the former 

case, ε(D0,1
n,4) is a principle submatrix of ε(T ). By a direct calculation and Lemma 1.3, we have εn(T ) ≤ ε6(D0,1

n,4) ≈ −7.5621 <
−2 − √

13, a contradiction. In the latter case, (iii), (iv) and (v) follow from Lemma 3.3.
This completes the proof. �

4. Concluding remarks

Remark 1. Theorem 2.10 characterizes trees with maximum ε-spectral radius among n-vertex trees with fixed odd diameter. 
For trees with maximum ε-spectral radius among n-vertex trees with fixed even diameter, it seems that it can not be 
determined similarly as the proof of Theorem 2.10 and an interesting research problem is put forward as follows.

Problem 4.1. Characterize the trees with maximum ε-spectral radius among n-vertex trees with fixed even diameter.
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[9] L.H. Feng, L. Lu, T. Réti, D. Stevanović, A bound on the spectral radius of graphs in terms of their Zagreb indices, Linear Algebra Appl. 597 (2020) 33–45.

[10] L.H. Feng, G.H. Yu, X.D. Zhang, Spectral radius of graphs with given matching number, Linear Algebra Appl. 422 (2007) 133–138.
[11] X.Y. Lei, J.F. Wang, G.Z. Li, On the eigenvalues of eccentricity matrix of graphs, Discrete Appl. Math. 295 (2021) 134–147.
[12] L. Lu, Q.X. Huang, Z.Z. Lou, On the distance spectra of threshold graphs, Linear Algebra Appl. 553 (2018) 223–237.
[13] H. Lin, L.H. Feng, Distance spectral radius of trees with given number of segments, Linear Algebra Appl. 600 (2020) 40–59.
[14] H.Y. Lin, B. Zhou, The distance spectral radius of graphs with given independence number, Ars Comb. 121 (2015) 113–123.
[15] H. Minc, Nonnegative Matrices, Wiley, 1988.
[16] I. Mahato, R. Gurusamy, M.R. Kannan, S. Arockiaraj, Spectra of eccentricity matrices of graphs, Discrete Appl. Math. 285 (2020) 252–260.
[17] W.J. Ning, L.Q. Ouyang, M. Lu, Distance spectral radius of trees with fixed number of pendent vertices, Linear Algebra Appl. 439 (2013) 2240–2249.
[18] A.K. Patel, L. Selvaganesh, S.K. Pandey, Energy and inertia of the eccentricity matrix of coalescence of graphs, Discrete Math. 344 (2021) 112591.
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