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Let ∂L
1 ≥ ∂L

2 ≥ · · · ≥ ∂L
n be the distance Laplacian eigenvalues 

of a connected graph G and m(∂L
i ) the multiplicity of ∂L

i . 
It is well known that the graphs with m(∂L

1 ) = n − 1
are complete graphs. Recently, the graphs with m(∂L

1 ) =
n − 2 have been characterised by Celso et al. In this paper, 
we completely determine the graphs with m(∂L

1 ) = n − 3.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we only consider simple connected graphs. Let G = (V, E) be a connected 
graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em}. The 
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distance between vi and vj , denoted by dG(vi, vj), is defined as the length of a shortest 
path between them. The diameter of G, denoted by d(G), is the maximum distance 
between any two vertices of G. The distance matrix of G, denoted by D(G), is the n ×n

matrix whose (i, j)-entry is equal to dG(vi, vj), i, j = 1, 2, . . . , n. The transmission Tr(vi)
of a vertex vi is defined as the sum of the distances between vi and all other vertices in G, 
that is, Tr(vi) =

∑n
j=1 dG(vi, vj). For more details about the distance matrix we refer 

the readers to [1]. Aouchiche and Hansen [2] introduced the Laplacian for the distance 
matrix of G as DL(G) = Tr(G) −D(G), where Tr(G) = diag(Tr(v1), Tr(v2), . . . , Tr(vn))
is the diagonal matrix of the vertex transmissions in G. The eigenvalues of DL(G), listed 
by ∂L

1 ≥ ∂L
2 ≥ · · · ≥ ∂L

n = 0, are called the distance Laplacian eigenvalues of G. The 
multiplicity of ∂L

i is denoted by m(∂L
i ). The distance eigenvalues together with their 

multiplicities is called the distance Laplacian spectrum of G, denoted by SpecL(G).
The distance Laplacian matrix aroused many active studies, such as [1,5,8,9]. Graphs 

with few distinct eigenvalues form an interesting class of graphs and possess nice com-
binatorial properties. With respect to distance Laplacian eigenvalues, we focus on the 
graphs with m(∂L

1 ) being large. Denote by G(n) the set of connected graphs of or-
der n. Let G(n, k) = {G ∈ G(n) | m(∂L

1 ) = k} be the set of connected graphs with 
m(∂L

1 ) = k. Aouchiche and Hansen [1] proved that G(n, n − 1) = {Kn} and conjectured 
that G(n, n − 2) = {K1,n−1, Kn/2,n/2}, which has been confirmed by Celso et al. [5]. 
Motivated by their work, we try to characterise G(n, n −3). In this paper, we completely 
determine the graphs in G(n, n − 3) (Theorem 3.3). By the way, we show that all these 
graphs are determined by their distance Laplacian spectra (Corollary 3.3).

2. Preliminaries

Let G be a connected graph, we always denote by NG(v) the neighbour set of v in G, 
that is, NG(v) = {u ∈ V (G) | u ∼ v}. The i-th largest distance Laplacian eigenvalue 
of G is denoted by ∂L

i (G), whose multiplicity is denoted by m(∂L
i (G)). When it is clear 

from the context which graph G we mean, we delete G from the notations like dG(vi, vj), 
NG(v), ∂L

i (G) and m(∂L
i (G)). For a subset S ⊆ V (G), let G[S] denote the subgraph of 

G induced by S.
As usual, we always write, respectively, Kn, Pn and Cn for the complete graph, the 

path and the cycle on n vertices. For integers a1, a2, . . . , ak ≥ 1, let Ka1,a2,...,ak
denote 

the complete k-partite graph on a1 + a2 + · · ·+ ak vertices. Let G be a connected graph, 
denote by Ḡ the complement of G, which is a graph with vertex set V (Ḡ) = V (G) and 
two vertices are adjacent whenever they are not adjacent in G. Let G1 = (V1, E1) and 
G2 = (V2, E2) be two connected graphs, the (disjoint-)union of G1 and G2 is the graph 
G1 ∪G2, whose vertex set is V1 ∪ V2 and edge set is E1 ∪ E2. The join of G1 and G2 is 
the graph G1∇G2, which is obtained from G1 ∪ G2 by joining each vertex of G1 with 
every vertex of G2. Moreover, we write mG = G ∪G ∪ · · · ∪G︸ ︷︷ ︸

m

for an integer m ≥ 2.

At first, we introduce the famous Cauchy interlacing theorem.
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Theorem 2.1 ([6]). Let A be a real symmetric matrix of order n with eigenvalues λ1(A) ≥
λ2(A) ≥ · · · ≥ λn(A) and let M be a principal submatrix of A with order m ≤ n and 
eigenvalues λ1(M) ≥ λ2(M) ≥ · · · ≥ λm(M). Then λi(A) ≥ λi(M) ≥ λn−m+i(A), for 
all 1 ≤ i ≤ m.

Let G be a graph on n vertices, denote by μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 the 
Laplacian eigenvalues of G and m(μi) the multiplicity of μi. There are many pretty 
properties for Laplacian eigenvalues.

Lemma 2.1 ([3]). Let G be a graph on n vertices with Laplacian eigenvalues μ1 ≥ μ2 ≥
· · · ≥ μn−1 ≥ μn = 0. Then we have the following results.
(i) Denote by m(0) the multiplicity of 0 as a Laplacian eigenvalue and w(G) the number 
of connected components of G. Then w(G) = m(0).
(ii) G has exactly two distinct Laplacian eigenvalues if and only if G is a union of 
complete graphs of the same order and isolate vertices.
(iii) The Laplacian eigenvalues of Ḡ are given by μi(Ḡ) = n −μn−i for i = 1, 2, . . . , n −1
and μn(Ḡ) = 0.
(iv) Let H be a graph on m vertices with Laplacian eigenvalues μ′

1 ≥ μ′
2 ≥ · · · ≥ μ′

m = 0, 
then the Laplacian spectrum of G∇H is

{n + m,m + μ1,m + μ2, . . . ,m + μn, n + μ′
1, n + μ′

2, . . . , n + μ′
m, 0}.

With respect to distance Laplacian eigenvalues, there are some similar results. The 
following results are given by Aouchiche and Hansen.

Theorem 2.2 ([2]). Let G be a connected graph on n vertices with d(G) ≤ 2. Let μ1 ≥
μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 be the Laplacian spectrum of G. Then the distance Laplacian 
spectrum of G is 2n −μn−1 ≥ 2n −μn−2 ≥ · · · ≥ 2n −μ1 ≥ ∂L

n = 0. Moreover, for every 
i ∈ {1, 2, . . . , n − 1} the eigenspaces corresponding to μi and to 2n − μi are the same.

Theorem 2.3 ([2]). Let G be a connected graph on n vertices. Then ∂L
n−1 ≥ n and 

∂L
n−1 = n if and only if Ḡ is disconnected. Furthermore, the multiplicity of n as a distance 

Laplacian eigenvalue is one less than the number of connected components of Ḡ.

Theorem 2.4 ([2]). Let G be a connected graph on n vertices and m ≥ n edges. Consider 
the connected graph G′ obtained from G by the deletion of an edge. Let ∂L

1 , ∂
L
2 , . . . , ∂

L
n

and ∂′ L
1 , ∂′ L

2 , . . . , ∂′ L
n denote the distance Laplacian spectra of G and G′ respectively. 

Then ∂′ L
i ≥ ∂L

i for all i = 1, . . . , n.

A graph G is said to be a cograph if it contains no induced P4. There’s a pretty result 
about cographs.
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Lemma 2.2 ([4]). Given a graph G, the following statements are equivalent:
1) G is a cograph.
2) The complement of any connected subgraph of G with at least two vertices is discon-
nected.
3) Every connected induced subgraph of G has diameter less than or equal to 2.

3. Main results

Recall that G(n, k) = {G ∈ G(n) | m(∂L
1 ) = k}. Aouchiche and Hansen [1]

proved that G(n, n − 1) = {Kn}. Recently, Celso et al. [5] proved that G(n, n − 2) =
{K1,n−1, Kn/2,n/2}. They also made efforts to characterise G(n, n − 3). Though they did 
not give a complete characterisation, their ideas are enlightening. Especially, they proved 
that the graphs in G(n, n − 3) contain no induced P5.

Lemma 3.1 ([5], Theorem 4.1). Let G ∈ G(n, n − 3) with n ≥ 5 then G does not contain 
induced P5.

Remark 1. If G does not contain induced P5, then d(G) ≤ 3. Note that Kn /∈ G(n, n −3). 
We obtain that d(G) = 2 or d(G) = 3 for any graph G ∈ G(n, n − 3) with n ≥ 5.

Lemma 3.2 ([5], Theorem 3.3). If G is a connected graph then ∂L
1 ≥ maxv∈V (G) Tr(v) +1

with equality holds if and only if G ∼= Kn.

Lemma 3.3. Let G ∈ G(n, n − 3) with n ≥ 6, then ∂L
1 is integral.

Proof. Let f(x) be the characteristic polynomial of DL(G). As DL(G) only contains 
integral entries, we obtain that f(x) is a monic polynomial with integral coefficients. 
Let p(x) be the minimal polynomial of ∂L

1 , then p(x) ∈ Z[x] is irreducible in Q[x] and 
(p(x))n−3|f(x). We assume that p(x) is a polynomial of degree at least 2. Therefore, 
p(x) has another root ∂ 	= 0, which is also a distance Laplacian eigenvalue of G with 
multiplicity n − 3. It leads to that n ≤ 2(n − 3) ≤ n − 1, a contradiction. Thus, we have 
p(x) = x − ∂L

1 and the result follows. �
From Lemmas 3.2 and 3.3, we get the following result.

Corollary 3.1. Let G = (V, E) ∈ G(n, n − 3) with n ≥ 6, then we have ∂L
1 ≥

maxv∈V Tr(v) + 2. Furthermore, if there exists v0 ∈ V such that ∂L
1 = Tr(v0) + 2, 

then Tr(v0) = maxv∈V Tr(v).

Proof. Obviously, G 	= Kn. By Lemma 3.2, we have that ∂L
1 > maxv∈V Tr(v) + 1. 

Besides, we get that ∂L
1 is integral from Lemma 3.3. Therefore, we have that ∂L

1 ≥
maxv∈V Tr(v) + 2. Furthermore, if ∂L

1 = Tr(v0) + 2, then we have Tr(v0) + 2 ≥
maxv∈V Tr(v) + 2. It follows that Tr(v0) = maxv∈V Tr(v). �
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Fig. 1. The graphs I1, I2, . . . , I5.

We say that a graph G is P5-free if it does not contain induced P5. From Lemma 3.1, 
all graphs in G(n, n − 3) are P5-free. By Remark 1, a P5-free graph may have diameter 
2 or 3. Now we discuss P5-free graphs with diameter 3.

Lemma 3.4. Let G be a connected P5-free graph on n ≥ 5 vertices with d(G) = 3. Then 
at least one of Ii for i = 1, 2, 3, 4, 5 (shown in Fig. 1) is an induced subgraph of G.

Proof. Suppose that d(v1, v4) = 3 and P = v1v2v3v4 is a shortest path from v1 to v4. 
Since n ≥ 5 and G is connected, there exists u ∈ V (G) \V (P ) such that N(u) ∩V (P ) 	= ∅, 
where N(u) = {v ∈ V (G) | v ∼ u} is the neighbour set of u in G. Moreover, since 
d(v1, v4) = 3, we have that v1 and v4 cannot be adjacent to u simultaneously, that is, 
{v1, v4} � N(u). Therefore, we have 1 ≤ |N(u) ∩ V (P )| ≤ 3.

Assume that |N(u) ∩ V (P )| = 1. We claim that N(u) ∩ V (P ) = {v2} or {v3} since G
is P5-free. Both of them lead to the induced subgraph I1.

Assume that |N(u) ∩ V (P )| = 2. We claim that N(u) ∩ V (P ) = {v1, v2}, {v3, v4}, 
{v1, v3}, {v2, v4}, or {v2, v3} because {v1, v4} � N(u). The former two cases lead to the 
induced subgraph I2, the next two cases lead to the induced subgraph I3 and the last 
case leads to the induced subgraph I4.

Assume that |N(u) ∩ V (P )| = 3. We claim that N(u) ∩ V (P ) = {v1, v2, v3} or 
{v2, v3, v4} because {v1, v4} � N(u). Both cases lead to the induced subgraph I5. �

Next we introduce a tool which will be used frequently.

Lemma 3.5. Let G ∈ G(n, n − 3) with n ≥ 5 and M a principal submatrix of DL(G) of 
order 5. Then ∂L

1 is also an eigenvalue of M with multiplicity at least two. Furthermore, 
for each 1 ≤ k ≤ 5, there exists an eigenvector z = (z1, z2, . . . , z5)T of M with respect to 
∂L
1 such that zk = 0 and 

∑5
i=1 zi = 0.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λ5 be the eigenvalues of M . By Theorem 2.1, we have 
∂L
1 = ∂L

n−4 ≤ λ1 ≤ ∂L
1 and ∂L

1 = ∂L
n−3 ≤ λ2 ≤ ∂L

2 = ∂L
1 . Therefore, we have λ1 =

λ2 = ∂L
1 . Suppose that x = (x1, . . . , x5)T and y = (y1, . . . , y5)T are two independent 

eigenvectors of M with respect to ∂L
1 . For each fixed integer 1 ≤ k ≤ 5, by linear 

combination of x and y, we get the eigenvector z = (z1, . . . , z5)T satisfying zk = 0. Let 
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Fig. 2. The graphs used in Lemma 3.6.

z∗ = (z1, . . . , z5, 0, . . . , 0)T . Note that ∂L
1 ≥ z∗TDL(G)z∗

z∗T z∗ = zTMz
zT z

= ∂L
1 . We get that z∗

is an eigenvector of DL(G) with respect to ∂L
1 	= 0. Note that the all-ones vector j is an 

eigenvector of DL(G) with respect to 0. We have z∗T j =
∑5

i=1 zi = 0. �
Denote by J(a, b) the graph obtained from K1,a∪K1,b by joining each pendent vertex 

of K1,a with every pendent vertex of K1,b (shown in Fig. 2). The non-pendent vertices 
of K1,a and K1,b are called the roots of J(a, b).

Lemma 3.6. Let G be a connected P5-free graph on n ≥ 5 vertices with diameter d(G) = 3. 
If none of I1, I2, I4 and I5 is an induced subgraph of G, then G = J(a, b) for some positive 
integers a, b ≥ 1 and a + b + 2 = n.

Proof. Let d(v1, v4) = 3 and P = v1v2v3v4 a shortest path between v1 and v4. By 
Lemma 3.4, at least one of Ii (shown in Fig. 1) is an induced subgraph of G for i =
1, 2, . . . , 5. Since none of I1, I2, I4 or I5 is an induced subgraph of G, we obtain that G
contains induced I3.

Note that I3 = J(2, 1) with roots v1 and v4 is an induced subgraph of G. We may 
assume that G′ = J(a, b) with roots v1 and v4 is the maximal induced subgraph of 
G including J(2, 1). Denote by U1 = NG′(v1) = {x1, x2, . . . , xa} and U2 = NG′(v4) =
{y1, y2, . . . , yb}. Obviously, v2, u ∈ U1 and v3 ∈ U2. In what follows we will show that 
G = J(a, b) with roots v1 and v4.

By the way of contradiction, assume that G 	= J(a, b). Then there exists v ∈ V (G) \
V (G′) such that NG(v) ∩ V (G′) 	= ∅. Since d(v1, v4) = 3, v is adjacent to at most one of 
v1 and v4. We claim that v is exactly adjacent to one of v1 and v4. Otherwise, we have 
v � v1, v4. Then NG(v) ∩ U1 	= ∅ or NG(v) ∩ U2 	= ∅. If v is adjacent to some vertex in 
NG(v) ∩U1 and some vertex in NG(v) ∩U2, say v ∼ x1 and v ∼ y1 (see Fig. 2 (1)), then we 
get the induced subgraph G[v1, x1, y1, v4, v] = I4, a contradiction. If v is only adjacent 
to some vertex in NG(v) ∩ U1, say v ∼ x1 (see Fig. 2 (2)), then we get the induced 
subgraph G[v1, x1, y1, v4, v] = I1, a contradiction. If v is only adjacent to some vertex in 
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NG(v) ∩ U2, say v ∼ y1, then we also get the induced subgraph G[v1, x1, y1, v4, v] = I1, 
a contradiction. Now we need to consider the following two situations.

Case 1. v ∼ v1 and v � v4;
First, we will show that U2 ⊆ NG(v). Otherwise, there exists some vertex in U2 not 

adjacent to v, say v � y1. Now, if v � x1 (see Fig. 2 (3)), then we get the induced 
subgraph G[v, v1, x1, y1, v4] = P5, a contradiction; if v ∼ x1 (see Fig. 2 (4)), then we get 
the induced subgraph G[v1, x1, y1, v4, v] = I2, a contradiction.

Next we will show that NG(v) ∩ U1 = ∅. Otherwise, there exists some vertex in U1
adjacent to v, say v ∼ x1. Recall that v ∼ y1 (see Fig. 2 (5)) according to the above 
arguments, we get the induced subgraph G[v1, x1, y1, v4, v] = I5, a contradiction.

Summarising the above discussion, we know that V (G′) ∪ {v} induces a subgraph 
J(a + 1, b) of G. This is impossible since G′ = J(a, b) is assumed to be the maximal 
induced subgraph including J(2, 1).

Case 2. v ∼ v4 and v � v1;
As similar as Case 1, by symmetry we can also deduce that G[V (G′) ∪{v}] = J(a, b +1). 

This is also impossible.
We complete this proof. �
After the completion of the preparations, we get one of our main results.

Theorem 3.1. Let G ∈ G(n, n − 3) with n ≥ 6, then d(G) = 2.

Proof. By Lemma 3.1 and Remark 1, we get that G is P5-free and d(G) = 2 or d(G) = 3. 
Assume by contradiction that d(G) = 3. Let d(v1, v4) = 3 and P = v1v2v3v4 a shortest 
path between v1 and v4. By Lemma 3.4, G contains at least one of Ii (labelled as Fig. 1) 
as an induced subgraph for i = 1, 2, . . . , 5.

Suppose that I1 is an induced subgraph of G. Note that dG(v4, u) = dI1(v4, u) −1 = 2
or dG(v4, u) = dI1(v4, u) = 3. We get that either M1 or M ′

1 is a principal submatrix of 
DL(G) with respect to I1, where

M1 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −2
−1 t2 −1 −2 −1
−2 −1 t3 −1 −2
−3 −2 −1 t4 −2
−2 −1 −2 −2 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

,M ′
1 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −2
−1 t2 −1 −2 −1
−2 −1 t3 −1 −2
−3 −2 −1 t4 −3
−2 −1 −2 −3 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

If M1 is a principal submatrix of DL(G), by Lemma 3.5, there exists an eigenvector 
x = (x1, x2, x3, x4, 0) satisfying x1 + x2 + x3 + x4 = 0 such that M1x = ∂L

1 x. Consider 
the fifth entry of both sides of M1x = ∂L

1 x, we have −2x1−x2−2x3−2x4 = 0. It follows 
that x2 = 0 and x1 + x3 + x4 = 0. Next we consider the second entry of both sides of 
M1x = ∂L

1 x, we have −x1 − x3 − 2x4 = 0. It follows that x4 = 0 and x1 + x3 = 0. We 
consider the fourth entry of both sides of M1x = ∂L

1 x, we have −3x1 −x3 = 0. It follows 
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that x1 = x3 = 0. Thus, we have x = 0, a contradiction. If M ′
1 is a principal submatrix 

of DL(G), by Lemma 3.5, there exists an eigenvector y = (0, y2, y3, y4, y5)T satisfying

y2 + y3 + y4 + y5 = 0 (1)

such that

M ′
1y = ∂L

1 y. (2)

Consider the first entry of both sides of Eq. (2), we have

−y2 − 2y3 − 3y4 − 2y5 = 0. (3)

Combining (1) and (3), we have y2 = y4. If y2 = y4 = 0, we consider the fourth entry 
of both sides of (2) and we get that y5 = 0. It follows that y = 0, a contradiction. 
If y2 = y4 	= 0, we consider the second entry of both sides of (2) and we get that 
∂L
1 = t2 − y3+2y4+y5

y2
= t2 − y2+y3+y4+y5

y2
. From (1), we have ∂L

1 = t2. It contradicts 
Corollary 3.1.

Suppose that I2 is an induced subgraph of G. Note that dG(v4, u) = dI2(v4, u) = 3 or 
dG(v4, u) = dI2(v4, u) −1 = 2. We get that the matrix M2 or M ′

2 is a principal submatrix 
of DL(G) with respect to I2, where

M2 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −1
−1 t2 −1 −2 −1
−2 −1 t3 −1 −2
−3 −2 −1 t4 −3
−1 −1 −2 −3 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

,M ′
2 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −1
−1 t2 −1 −2 −1
−2 −1 t3 −1 −2
−3 −2 −1 t4 −2
−1 −1 −2 −2 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

If M2 is a principal submatrix of DL(G), by Lemma 3.5, there exists an eigenvector 
x = (x1, 0, x3, x4, x5)T satisfying x1 + x3 + x4 + x5 = 0 such that M2x = ∂L

1 x. We 
successively consider the second, the fourth and the third entries of both sides of M2x =
∂L
1 x, we get that x3 = x4 = 0 and x1 + x5 = 0. If x1 = 0, then x5 = 0 and x = 0, 

a contradiction. If x1 	= 0, consider the first entry of both sides of M2x = ∂L
1 x, we get 

that ∂L
1 = t1 − x5

x1
= t1 + 1. It contradicts Corollary 3.1. If M ′

2 is a principal submatrix 
of DL(G), by Lemma 3.5, there exists an eigenvector y = (y1, y2, y3, y4, 0)T satisfying 
y1 + y2 + y3 + y4 = 0 such that M ′

2y = ∂L
1 y. Consider the fifth entry of both sides of 

M ′
2y = ∂L

1 y, we have −y1 − y2 − 2y3 − 2y4 = 0. It leads to that y1 + y2 = y3 + y4 = 0. 
If y3 = y4 = 0, we consider the third entry of both sides of M ′

2y = ∂L
1 y and we get that 

y1 = y2 = 0. It leads to that y = 0, a contradiction. If y1 = y2 = 0, we consider the 
second entry of both sides of M ′

2y = ∂L
1 y and we get that y3 = y4 = 0. It leads to that 

y = 0, a contradiction. If y1, y2, y3, y4 	= 0, without loss of generality, we may suppose 
that y = (a, −a, 1, −1, 0). Consider the third entry of both sides of M ′

2y = ∂L
1 y, we have 
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∂L
1 = t3 +1 −a. By Corollary 3.1, we have a < 0. Consider the fourth entry of both sides 

of M ′
2y = ∂L

1 y, we have ∂L
1 = t4 +1 +a. By Corollary 3.1, we have a > 0, a contradiction.

Suppose that I4 is an induced subgraph of G. We get that the matrix M4 is a principal 
submatrix of DL(G) with respect to I4, where

M4 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −2
−1 t2 −1 −2 −1
−2 −1 t3 −1 −1
−3 −2 −1 t4 −2
−2 −1 −1 −2 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (x1, 0, x3, x4, x5)T satisfying x1+x3+x4+
x5 = 0 such that M4x = ∂L

1 x. Consider the second and the fourth entries of both sides 
of M4x = ∂L

1 x successively, we get that x4 = 0, x1 = x3 and x5 = −2x1. If x1 = x3 = 0, 
then x = 0, a contradiction. If x1 = x3 	= 0, consider the third entry of both sides of 
M4x = ∂L

1 x and we get that ∂L
1 = t3. It contradicts Corollary 3.1.

Suppose that I5 is an induced subgraph of G. We get that the matrix M5 is a principal 
submatrix of DL(G) with respect to I5, where

M5 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −1
−1 t2 −1 −2 −1
−2 −1 t3 −1 −1
−3 −2 −1 t4 −2
−1 −1 −1 −2 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (x1, 0, x3, x4, x5)T satisfying x1 + x3 +
x4 + x5 = 0 such that M5x = ∂L

1 x. We successively consider the second and the fourth 
entries of both sides of M5x = ∂L

1 x, we have that x4 = 0, x1 = x3 and x5 = −2x3. If 
x3 = 0, we have x = 0, a contradiction. If x3 	= 0, consider the third entry of both sides 
of M5x = ∂L

1 x, we have ∂L
1 = t3. It contradicts Corollary 3.1.

Suppose that I3 is an induced subgraph of G. On the one hand, we get that the matrix 
M3 is a principal submatrix of DL(G) with respect to I3, where

M3 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −3 −1
−1 t2 −1 −2 −2
−2 −1 t3 −1 −1
−3 −2 −1 t4 −2
−1 −2 −1 −2 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (x1, x2, 0, x4, x5)T satisfying x1 + x2 +
x4 + x5 = 0 such that M3x = ∂L

1 x. We successively consider the third, the first and the 
fourth entries of both sides of M3x = ∂L

1 x, then we get that x1 = x4 = 0 and x2+x5 = 0. 
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Fig. 3. The graphs in Lemma 3.7.

If x2 = x5 = 0, then x = 0, a contradiction. If x2 	= 0, without loss of generality, we may 
suppose that x = (0, 1, 0, 0, −1)T . Consider the second entry of M3x = ∂L

1 x, we get that 
∂L
1 = t2 + 2. By Corollary 3.1, we get that

Tr(v2) = max
v∈V (G)

Tr(v). (4)

On the other hand, recall that G is P5-free. Moreover, by the arguments above, we have 
that G contains no induced I1, I2, I4 or I5. Therefore, by Lemma 3.6, we have that 
G = J(a, b) with roots v1 and v4. By simple calculation, we have Tr(v1) = a + 2b + 3, 
Tr(v4) = 2a + b + 3, Tr(x) = 2a + b + 1 for every x ∈ N(v1) and Tr(y) = 2b + a + 1 for 
every y ∈ N(v4). Note that v2 ∈ N(v1). We get that

Tr(v2) = 2a + b + 1 < 2a + b + 3 = Tr(v4),

which contradicts (4).
We complete the proof. �
The result above showed that the graphs in G(n, n − 3) have diameter 2. In fact, we 

can further obtain that G is the join of two graphs. To prove this, we need the following 
result.

Lemma 3.7. Let G ∈ G(n, n − 3) with n ≥ 6, then none of J1(= C5), J2 or J3 (shown in 
Fig. 3) can be an induced subgraph of G.

Proof. Assume by contradiction that J1 = C5 is an induced subgraph of G. We get that 
the matrix N1 is a principal submatrix of DL(G) with respect to J1, where

N1 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −2 −1
−1 t2 −1 −2 −2
−2 −1 t3 −1 −2
−2 −2 −1 t4 −1
−1 −2 −2 −1 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (0, x2, x3, x4, x5)T satisfying x2 + x3 +
x4 + x5 = 0 such that N1x = ∂L

1 x. From the first entry of N1x = ∂L
1 x, we have −x2 −
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2x3 − 2x4 − x5 = 0. Therefore, we have x3 + x4 = 0 and x2 + x5 = 0. If x3 = x4 = 0, 
consider the third entry of both sides of N1x = ∂L

1 x and we get that x2 = x5 = 0. It leads 
to that x = 0, a contradiction. If x2 = x5 = 0, consider the second entry of both sides 
of N1x = ∂L

1 x and we get that x3 = x4 = 0. It leads to that x = 0, a contradiction. If 
x2, x3, x4, x5 	= 0, without loss of generality, we may suppose that x = (0, a, 1, −1, −a)T . 
Thus, we have ⎛

⎜⎜⎜⎜⎜⎝
t1 −1 −2 −2 −1
−1 t2 −1 −2 −2
−2 −1 t3 −1 −2
−2 −2 −1 t4 −1
−1 −2 −2 −1 t5

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0
a

1
−1
−a

⎞
⎟⎟⎟⎟⎟⎠ = ∂L

1

⎛
⎜⎜⎜⎜⎜⎝

0
a

1
−1
−a

⎞
⎟⎟⎟⎟⎟⎠ . (5)

Consider the fourth entry of both sides of (5), we have

∂L
1 = t4 + a + 1.

By Corollary 3.1, we have a ≥ 1. Consider the fifth entry of both sides of Eq. (5), we 
have

∂L
1 = t5 + 1

a
+ 2.

By Lemma 3.3, we get that ∂L
1 is integral. Therefore, a and 1

a are both integral. Thus, 
we have a = 1 and ∂L

1 = t4 + 2 = t5 + 3. It follows that

t4 = t5 + 1. (6)

On the other hand, by Lemma 3.5, there also exists an eigenvector y = (y1, 0, y3, y4, y5)T
satisfying y1+y3+y4+y5 = 0 such that N1y = ∂L

1 y. From the second entry of N1y = ∂L
1 y, 

we have −y1 − y3 − 2y4 − 2y5 = 0. Therefore, we have y4 + y5 = 0 and y1 + y3 = 0. 
If y1 = y3 = 0 or y4 = y5 = 0, we also get y = 0, a contradiction. If y1, y3, y4, y5 	= 0, 
without loss of generality, we may suppose that y = (b, 0, −b, 1, −1)T . Thus, we have

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −2 −1
−1 t2 −1 −2 −2
−2 −1 t3 −1 −2
−2 −2 −1 t4 −1
−1 −2 −2 −1 t5

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

b

0
−b

1
−1

⎞
⎟⎟⎟⎟⎟⎠ = ∂L

1

⎛
⎜⎜⎜⎜⎜⎝

b

0
−b

1
−1

⎞
⎟⎟⎟⎟⎟⎠ . (7)

Consider the fourth and the fifth entries of both sides of Eq. (7), we have

∂L
1 = t4 − b + 1 = t5 − b + 1.

It follows that t4 = t5, which contradicts (6).
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Assume by contradiction that J2 is an induced subgraph of G. We get that the matrix 
N2 is a principal submatrix of DL with respect to J2, where

N2 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −2 −1
−1 t2 −1 −2 −1
−2 −1 t3 −1 −2
−2 −2 −1 t4 −1
−1 −1 −2 −1 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (x1, x2, x3, x4, 0)T satisfying x1+x2+x3+
x4 = 0 such that N2x = ∂L

1 x. We successively consider the fifth, the third, the first and 
the fourth entries of both sides of N2x = ∂L

1 x, then we get that x = 0, a contradiction.
Assume by contradiction that J3 is an induced subgraph of G. We get that the matrix 

N3 is a principal submatrix of DL with respect to J3, where

N3 =

⎛
⎜⎜⎜⎜⎜⎝

t1 −1 −2 −2 −1
−1 t2 −1 −2 −1
−2 −1 t3 −1 −1
−2 −2 −1 t4 −1
−1 −1 −1 −1 t5

⎞
⎟⎟⎟⎟⎟⎠

v1
v2
v3
v4
u

.

By Lemma 3.5, there exists an eigenvector x = (x1, x2, 0, x4, x5)T satisfying x1 + x2 +
x4+x5 = 0 such that N3x = ∂L

1 x. Consider the third, the first, the fourth and the second 
entries of both sides of N3x = ∂L

1 x successively, we get that x = 0, a contradiction. �
Using the above tools, we get the following result.

Theorem 3.2. Let G ∈ G(n, n − 3) with n ≥ 6, then Ḡ is disconnected. It means that G
is the join of some connected graphs.

Proof. By Lemma 2.2, it suffices to show that G contains no induced P4. Assume by 
contradiction that G contains an induced P4 = v1v2v3v4. By Theorem 3.1, we have 
d(G) = 2. Therefore, there exists a vertex u ∈ V (G) such that u ∼ v1, v4. It follows that 
at least one of J1, J2 and J3 will be an induced subgraph of G, contradicts Lemma 3.7. �

For any graph G ∈ G(n, n − 3), we see that G has at most four distinct eigenvalues, 
and we also have ∂L

n−1(G) = n by Theorems 2.3 and 3.2. Denote by

H1(n) = {G ∈ G(n, n− 3) | SpecL(G) = [(∂L
1 )n−3, ∂L

n−2, ∂
L
n−1 = n, ∂L

n = 0]},

and

H2(n) = {G ∈ G(n, n− 3) | SpecL(G) = [(∂L
1 )n−3, ∂L

n−2 = ∂L
n−1 = n, ∂L

n = 0]}.
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Therefore, H1(n) and H2(n) are the sets of graphs with four and three distinct eigenvalues 
in G(n, n − 3), respectively. Thus we have the disjoint decomposition

G(n, n− 3) = H1(n) ∪H2(n).

Mohammadian [7] gave the following result.

Lemma 3.8 ([7], Theorem 8). Let G be a graph on n ≥ 5 vertices whose distinct Laplacian 
eigenvalues are 0 < α < β < γ. Then the multiplicity of α is n −3 if and only if G is one 
of the graphs K2,n−2, Kn/2,n/2 + e or K1,n−1 + e, where Kn/2,n/2 + e and K1,n−1 + e are 
the graphs obtained from Kn/2,n/2 and K1,n−1, respectively, by adding an edge e joining 
any two non-adjacent vertices.

Note that, when d(G) = 2, there exists a correspondence between the distance Lapla-
cian spectrum and the Laplacian spectrum of G. We have the following result.

Corollary 3.2. For an integer n ≥ 6, we have H1(n) = {K2,n−2, Kn/2,n/2+e, K1,n−1+e}, 
and their distance Laplacian spectra are given by

⎧⎪⎨
⎪⎩

SpecL(K2,n−2) = {(2n− 2)n−3, n + 2, n, 0}
SpecL(Kn/2,n/2 + e) = {(3n

2 )n−3, 3n
2 − 2, n, 0}

SpecL(K1,n−1 + e) = {(2n− 1)n−3, 2n− 3, n, 0}
(8)

Proof. Let G ∈ H1(n) and SpecL(G) = {(∂L
1 )n−3, ∂L

n−2, n, 0} where ∂L
1 > ∂L

n−2 > n. By 
Theorem 3.1, we have d(G) = 2. Therefore, by Theorem 2.2, the Laplacian spectrum of G
is {n, 2n −∂L

n−2, (2n −∂L
1 )n−3, 0}. Thus, we get that G ∈ {K2,n−2, Kn/2,n/2+e, K1,n−1+e}

from Lemma 3.8. Conversely, note that all of K2,n−2, Kn/2,n/2 + e and K1,n−1 + e are 
the join of two graphs, by Lemma 2.1 (iv) and Theorem 2.2, we obtain their distance 
Laplacian spectra, which are shown in (8). Therefore, K2,n−2, Kn/2,n/2 + e, K1,n−1 + e ∈
H1(n), and the result follows. �

In what follows we characterise H2(n).

Lemma 3.9. For an integer n ≥ 6, we have H2(n) = {K2∇(n − 2)K1, K1∇Kn−1
2 ,n−1

2
,

Kn
3 ,n3 ,n3

}, and their distance Laplacian spectra are given by

⎧⎪⎨
⎪⎩

SpecL(K2∇(n− 2)K1) = {(2n− 2)n−3, n2, 0}
SpecL(K1∇Kn−1

2 ,n−1
2

) = {((3n− 1)/2)n−3, n2, 0}
SpecL(Kn

3 ,n3 ,n3
) = {(4n/3)n−3, n2, 0}

(9)

Proof. Let G ∈ H2(n) and SpecL(G) = {(∂L
1 )n−3, n2, 0} where ∂L

1 > n. By Theo-
rem 3.1, we get that d(G) = 2. Therefore, by Theorem 2.2, the Laplacian spectrum 
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of G is {n2, (2n − ∂L
1 )n−3, 0}. By Lemma 2.1 (iii), the Laplacian spectrum of Ḡ is 

{(∂L
1 − n)n−3, 03}. By Lemma 2.1 (i), Ḡ has exactly three components, denoted by 

G1, G2 and G3. Moreover, by Lemma 2.1 (ii), G1, G2 and G3 are either complete 
graphs of the same order or isolate vertices. If none of them is an isolate vertex, then 
G1 ∼= G2 ∼= G3 ∼= Kn/3. It follows that G = 3Kn/3 = Kn

3 ,n3 ,n3
. If there is exactly 

one of them being an isolate vertex, say G3, then G1 ∼= G2 ∼= K(n−1)/2. It follows that 
G = 2K(n−1)/2 ∪K1 = K1∇Kn−1

2 ,n−1
2

. If there are exactly two of them being isolate ver-
tices, say G2 and G3, then G1 ∼= Kn−2. It follows that G = Kn−2 ∪ 2K1 = K2∇(n −2)K1. 
Conversely, note that all of K2∇(n −2)K1, K1∇Kn−1

2 ,n−1
2

and Kn
3 ,n3 ,n3

are the join of two 
graphs, by Lemma 2.1 (iv) and Theorem 2.2, we obtain their distance Laplacian spectra, 
which are shown in (9). Therefore, K2∇(n −2)K1, K1∇Kn−1

2 ,n−1
2

, Kn
3 ,n3 ,n3

∈ H2(n), and 
the result follows. �

Recall that G(n, n − 3) = H1(n) ∪ H2(n). Combining Corollary 3.2 and Lemma 3.9, 
we completely determine G(n, n − 3) in the following result.

Theorem 3.3. For an integer n ≥ 6, we have

G(n, n−3) = {K2,n−2,K1,n−1 +e,Kn/2,n/2 +e,K2∇(n−2)K1,K1∇Kn−1
2 ,n−1

2
,Kn

3 ,n3 ,n3
}.

Remark 2. By using the software SageMath, we get the graphs with m(∂L
1 ) = n − 3 for 

n = 4 and n = 5. That is,

{
G(4, 1) = {P4,K1,3 + e,K2∇2K1}
G(5, 2) = {K2,3,K1,4 + e,K2∇3K1,K1∇K2,2, C5}

.

We end up this paper by the following result.

Corollary 3.3. Let G ∈ G(n, n − 3) with n ≥ 5 then G is determined by its distance 
Laplacian spectrum.

Proof. Let H ∈ G(n) with SpecL(H) = SpecL(G). We get that H ∈ G(n, n − 3). Then, 
the result follows by pairwise comparing the distance Laplacian spectra of graphs in 
G(n, n − 3), which are presented in (8) and (9). �
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