

On graphs with distance Laplacian spectral radius of multiplicity $n - 3 \stackrel{\Leftrightarrow}{\approx}$

Lu Lu, Qiongxiang Huang*, Xueyi Huang

College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

Article history: Received 25 March 2017 Accepted 28 May 2017 Available online 1 June 2017 Submitted by D. Stevanovic

MSC: 05C50 05C12 15A18

Keywords: Distance Laplacian matrix Laplacian matrix Largest eigenvalue Characterised by distance Laplacian spectrum

ABSTRACT

Let $\partial_1^L \geq \partial_2^L \geq \cdots \geq \partial_n^L$ be the distance Laplacian eigenvalues of a connected graph G and $m(\partial_i^L)$ the multiplicity of ∂_i^L . It is well known that the graphs with $m(\partial_1^L) = n - 1$ are complete graphs. Recently, the graphs with $m(\partial_1^L) = n - 2$ have been characterised by Celso et al. In this paper, we completely determine the graphs with $m(\partial_1^L) = n - 3$.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we only consider simple connected graphs. Let G = (V, E) be a connected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = \{e_1, e_2, \ldots, e_m\}$. The

* Corresponding author.

E-mail address: huangqx@xju.edu.cn (Q. Huang).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2017.05.044 \\ 0024-3795/© 2017 Elsevier Inc. All rights reserved.$

^{*} Supported by the National Natural Science Foundation of China (Grant Nos. 11671344, 11531011).

distance between v_i and v_j , denoted by $d_G(v_i, v_j)$, is defined as the length of a shortest path between them. The diameter of G, denoted by d(G), is the maximum distance between any two vertices of G. The distance matrix of G, denoted by $\mathcal{D}(G)$, is the $n \times n$ matrix whose (i, j)-entry is equal to $d_G(v_i, v_j)$, $i, j = 1, 2, \ldots, n$. The transmission $Tr(v_i)$ of a vertex v_i is defined as the sum of the distances between v_i and all other vertices in G, that is, $Tr(v_i) = \sum_{j=1}^n d_G(v_i, v_j)$. For more details about the distance matrix we refer the readers to [1]. Aouchiche and Hansen [2] introduced the Laplacian for the distance matrix of G as $\mathcal{D}^L(G) = Tr(G) - \mathcal{D}(G)$, where $Tr(G) = diag(Tr(v_1), Tr(v_2), \ldots, Tr(v_n))$ is the diagonal matrix of the vertex transmissions in G. The eigenvalues of $\mathcal{D}^L(G)$, listed by $\partial_1^L \geq \partial_2^L \geq \cdots \geq \partial_n^L = 0$, are called the distance Laplacian eigenvalues of G. The multiplicities is called the distance Laplacian spectrum of G, denoted by $Spec_{\mathcal{L}}(G)$.

The distance Laplacian matrix aroused many active studies, such as [1,5,8,9]. Graphs with few distinct eigenvalues form an interesting class of graphs and possess nice combinatorial properties. With respect to distance Laplacian eigenvalues, we focus on the graphs with $m(\partial_1^L)$ being large. Denote by $\mathcal{G}(n)$ the set of connected graphs of order n. Let $\mathcal{G}(n,k) = \{G \in \mathcal{G}(n) \mid m(\partial_1^L) = k\}$ be the set of connected graphs with $m(\partial_1^L) = k$. Aouchiche and Hansen [1] proved that $\mathcal{G}(n, n-1) = \{K_n\}$ and conjectured that $\mathcal{G}(n, n-2) = \{K_{1,n-1}, K_{n/2,n/2}\}$, which has been confirmed by Celso et al. [5]. Motivated by their work, we try to characterise $\mathcal{G}(n, n-3)$. In this paper, we completely determine the graphs in $\mathcal{G}(n, n-3)$ (Theorem 3.3). By the way, we show that all these graphs are determined by their distance Laplacian spectra (Corollary 3.3).

2. Preliminaries

Let G be a connected graph, we always denote by $N_G(v)$ the neighbour set of v in G, that is, $N_G(v) = \{u \in V(G) \mid u \sim v\}$. The *i*-th largest distance Laplacian eigenvalue of G is denoted by $\partial_i^L(G)$, whose multiplicity is denoted by $m(\partial_i^L(G))$. When it is clear from the context which graph G we mean, we delete G from the notations like $d_G(v_i, v_j)$, $N_G(v), \partial_i^L(G)$ and $m(\partial_i^L(G))$. For a subset $S \subseteq V(G)$, let G[S] denote the subgraph of G induced by S.

As usual, we always write, respectively, K_n , P_n and C_n for the complete graph, the path and the cycle on n vertices. For integers $a_1, a_2, \ldots, a_k \ge 1$, let K_{a_1,a_2,\ldots,a_k} denote the complete k-partite graph on $a_1 + a_2 + \cdots + a_k$ vertices. Let G be a connected graph, denote by \overline{G} the *complement* of G, which is a graph with vertex set $V(\overline{G}) = V(G)$ and two vertices are adjacent whenever they are not adjacent in G. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two connected graphs, the *(disjoint-)union* of G_1 and G_2 is the graph $G_1 \cup G_2$, whose vertex set is $V_1 \cup V_2$ and edge set is $E_1 \cup E_2$. The *join* of G_1 and G_2 is the graph $G_1 \nabla G_2$, which is obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2 . Moreover, we write $mG = \underline{G \cup G \cup \cdots \cup G}$ for an integer $m \ge 2$.

At first, we introduce the famous Cauchy interlacing theorem.

Theorem 2.1 ([6]). Let A be a real symmetric matrix of order n with eigenvalues $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)$ and let M be a principal submatrix of A with order $m \leq n$ and eigenvalues $\lambda_1(M) \geq \lambda_2(M) \geq \cdots \geq \lambda_m(M)$. Then $\lambda_i(A) \geq \lambda_i(M) \geq \lambda_{n-m+i}(A)$, for all $1 \leq i \leq m$.

Let G be a graph on n vertices, denote by $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1} \ge \mu_n = 0$ the Laplacian eigenvalues of G and $m(\mu_i)$ the multiplicity of μ_i . There are many pretty properties for Laplacian eigenvalues.

Lemma 2.1 ([3]). Let G be a graph on n vertices with Laplacian eigenvalues $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1} \ge \mu_n = 0$. Then we have the following results.

(i) Denote by m(0) the multiplicity of 0 as a Laplacian eigenvalue and w(G) the number of connected components of G. Then w(G) = m(0).

(ii) G has exactly two distinct Laplacian eigenvalues if and only if G is a union of complete graphs of the same order and isolate vertices.

(iii) The Laplacian eigenvalues of \bar{G} are given by $\mu_i(\bar{G}) = n - \mu_{n-i}$ for i = 1, 2, ..., n-1and $\mu_n(\bar{G}) = 0$.

(iv) Let H be a graph on m vertices with Laplacian eigenvalues $\mu'_1 \ge \mu'_2 \ge \cdots \ge \mu'_m = 0$, then the Laplacian spectrum of $G \nabla H$ is

 $\{n+m, m+\mu_1, m+\mu_2, \dots, m+\mu_n, n+\mu'_1, n+\mu'_2, \dots, n+\mu'_m, 0\}.$

With respect to distance Laplacian eigenvalues, there are some similar results. The following results are given by Aouchiche and Hansen.

Theorem 2.2 ([2]). Let G be a connected graph on n vertices with $d(G) \leq 2$. Let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq \mu_n = 0$ be the Laplacian spectrum of G. Then the distance Laplacian spectrum of G is $2n - \mu_{n-1} \geq 2n - \mu_{n-2} \geq \cdots \geq 2n - \mu_1 \geq \partial_n^L = 0$. Moreover, for every $i \in \{1, 2, \ldots, n-1\}$ the eigenspaces corresponding to μ_i and to $2n - \mu_i$ are the same.

Theorem 2.3 ([2]). Let G be a connected graph on n vertices. Then $\partial_{n-1}^L \ge n$ and $\partial_{n-1}^L = n$ if and only if \bar{G} is disconnected. Furthermore, the multiplicity of n as a distance Laplacian eigenvalue is one less than the number of connected components of \bar{G} .

Theorem 2.4 ([2]). Let G be a connected graph on n vertices and $m \ge n$ edges. Consider the connected graph G' obtained from G by the deletion of an edge. Let $\partial_1^L, \partial_2^L, \ldots, \partial_n^L$ and $\partial_1'^L, \partial_2'^L, \ldots, \partial_n'^L$ denote the distance Laplacian spectra of G and G' respectively. Then $\partial_i'^L \ge \partial_i^L$ for all $i = 1, \ldots, n$.

A graph G is said to be a *cograph* if it contains no induced P_4 . There's a pretty result about cographs.

Lemma 2.2 ([4]). Given a graph G, the following statements are equivalent:

1) G is a cograph.

2) The complement of any connected subgraph of G with at least two vertices is disconnected.

3) Every connected induced subgraph of G has diameter less than or equal to 2.

3. Main results

Recall that $\mathcal{G}(n,k) = \{G \in \mathcal{G}(n) \mid m(\partial_1^L) = k\}$. Aouchiche and Hansen [1] proved that $\mathcal{G}(n,n-1) = \{K_n\}$. Recently, Celso et al. [5] proved that $\mathcal{G}(n,n-2) = \{K_{1,n-1}, K_{n/2,n/2}\}$. They also made efforts to characterise $\mathcal{G}(n,n-3)$. Though they did not give a complete characterisation, their ideas are enlightening. Especially, they proved that the graphs in $\mathcal{G}(n, n-3)$ contain no induced P_5 .

Lemma 3.1 ([5], Theorem 4.1). Let $G \in \mathcal{G}(n, n-3)$ with $n \ge 5$ then G does not contain induced P_5 .

Remark 1. If G does not contain induced P_5 , then $d(G) \leq 3$. Note that $K_n \notin \mathcal{G}(n, n-3)$. We obtain that d(G) = 2 or d(G) = 3 for any graph $G \in \mathcal{G}(n, n-3)$ with $n \geq 5$.

Lemma 3.2 ([5], Theorem 3.3). If G is a connected graph then $\partial_1^L \ge \max_{v \in V(G)} Tr(v) + 1$ with equality holds if and only if $G \cong K_n$.

Lemma 3.3. Let $G \in \mathcal{G}(n, n-3)$ with $n \ge 6$, then ∂_1^L is integral.

Proof. Let f(x) be the characteristic polynomial of $\mathcal{D}^{L}(G)$. As $\mathcal{D}^{L}(G)$ only contains integral entries, we obtain that f(x) is a monic polynomial with integral coefficients. Let p(x) be the minimal polynomial of ∂_{1}^{L} , then $p(x) \in Z[x]$ is irreducible in Q[x] and $(p(x))^{n-3}|f(x)$. We assume that p(x) is a polynomial of degree at least 2. Therefore, p(x) has another root $\partial \neq 0$, which is also a distance Laplacian eigenvalue of G with multiplicity n-3. It leads to that $n \leq 2(n-3) \leq n-1$, a contradiction. Thus, we have $p(x) = x - \partial_{1}^{L}$ and the result follows. \Box

From Lemmas 3.2 and 3.3, we get the following result.

Corollary 3.1. Let $G = (V, E) \in \mathcal{G}(n, n-3)$ with $n \geq 6$, then we have $\partial_1^L \geq \max_{v \in V} Tr(v) + 2$. Furthermore, if there exists $v_0 \in V$ such that $\partial_1^L = Tr(v_0) + 2$, then $Tr(v_0) = \max_{v \in V} Tr(v)$.

Proof. Obviously, $G \neq K_n$. By Lemma 3.2, we have that $\partial_1^L > \max_{v \in V} Tr(v) + 1$. Besides, we get that ∂_1^L is integral from Lemma 3.3. Therefore, we have that $\partial_1^L \ge \max_{v \in V} Tr(v) + 2$. Furthermore, if $\partial_1^L = Tr(v_0) + 2$, then we have $Tr(v_0) + 2 \ge \max_{v \in V} Tr(v) + 2$. It follows that $Tr(v_0) = \max_{v \in V} Tr(v)$. \Box

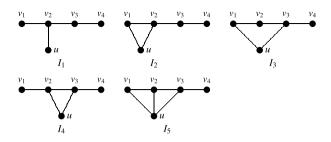


Fig. 1. The graphs $I_1, I_2, ..., I_5$.

We say that a graph G is P_5 -free if it does not contain induced P_5 . From Lemma 3.1, all graphs in $\mathcal{G}(n, n-3)$ are P_5 -free. By Remark 1, a P_5 -free graph may have diameter 2 or 3. Now we discuss P_5 -free graphs with diameter 3.

Lemma 3.4. Let G be a connected P_5 -free graph on $n \ge 5$ vertices with d(G) = 3. Then at least one of I_i for i = 1, 2, 3, 4, 5 (shown in Fig. 1) is an induced subgraph of G.

Proof. Suppose that $d(v_1, v_4) = 3$ and $P = v_1 v_2 v_3 v_4$ is a shortest path from v_1 to v_4 . Since $n \ge 5$ and G is connected, there exists $u \in V(G) \setminus V(P)$ such that $N(u) \cap V(P) \ne \emptyset$, where $N(u) = \{v \in V(G) \mid v \sim u\}$ is the neighbour set of u in G. Moreover, since $d(v_1, v_4) = 3$, we have that v_1 and v_4 cannot be adjacent to u simultaneously, that is, $\{v_1, v_4\} \not\subseteq N(u)$. Therefore, we have $1 \le |N(u) \cap V(P)| \le 3$.

Assume that $|N(u) \cap V(P)| = 1$. We claim that $N(u) \cap V(P) = \{v_2\}$ or $\{v_3\}$ since G is P_5 -free. Both of them lead to the induced subgraph I_1 .

Assume that $|N(u) \cap V(P)| = 2$. We claim that $N(u) \cap V(P) = \{v_1, v_2\}, \{v_3, v_4\}, \{v_1, v_3\}, \{v_2, v_4\}, \text{ or } \{v_2, v_3\}$ because $\{v_1, v_4\} \not\subseteq N(u)$. The former two cases lead to the induced subgraph I_2 , the next two cases lead to the induced subgraph I_3 and the last case leads to the induced subgraph I_4 .

Assume that $|N(u) \cap V(P)| = 3$. We claim that $N(u) \cap V(P) = \{v_1, v_2, v_3\}$ or $\{v_2, v_3, v_4\}$ because $\{v_1, v_4\} \not\subseteq N(u)$. Both cases lead to the induced subgraph I_5 . \Box

Next we introduce a tool which will be used frequently.

Lemma 3.5. Let $G \in \mathcal{G}(n, n-3)$ with $n \geq 5$ and M a principal submatrix of $\mathcal{D}^{L}(G)$ of order 5. Then ∂_{1}^{L} is also an eigenvalue of M with multiplicity at least two. Furthermore, for each $1 \leq k \leq 5$, there exists an eigenvector $z = (z_1, z_2, \ldots, z_5)^T$ of M with respect to ∂_{1}^{L} such that $z_k = 0$ and $\sum_{i=1}^{5} z_i = 0$.

Proof. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_5$ be the eigenvalues of M. By Theorem 2.1, we have $\partial_1^L = \partial_{n-4}^L \leq \lambda_1 \leq \partial_1^L$ and $\partial_1^L = \partial_{n-3}^L \leq \lambda_2 \leq \partial_2^L = \partial_1^L$. Therefore, we have $\lambda_1 = \lambda_2 = \partial_1^L$. Suppose that $x = (x_1, \ldots, x_5)^T$ and $y = (y_1, \ldots, y_5)^T$ are two independent eigenvectors of M with respect to ∂_1^L . For each fixed integer $1 \leq k \leq 5$, by linear combination of x and y, we get the eigenvector $z = (z_1, \ldots, z_5)^T$ satisfying $z_k = 0$. Let

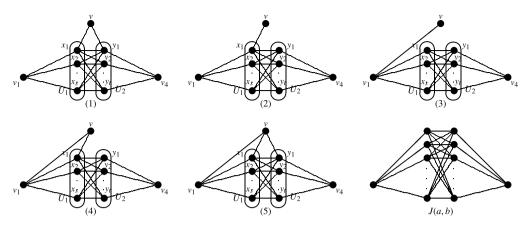


Fig. 2. The graphs used in Lemma 3.6.

 $z_* = (z_1, \ldots, z_5, 0, \ldots, 0)^T$. Note that $\partial_1^L \geq \frac{z^*{}^T \mathcal{D}^L(G) z_*}{z^*{}^T z_*} = \frac{z^T M z}{z^T z} = \partial_1^L$. We get that z_* is an eigenvector of $\mathcal{D}^L(G)$ with respect to $\partial_1^L \neq 0$. Note that the all-ones vector j is an eigenvector of $\mathcal{D}^L(G)$ with respect to 0. We have $z^*{}^T j = \sum_{i=1}^5 z_i = 0$. \Box

Denote by J(a, b) the graph obtained from $K_{1,a} \cup K_{1,b}$ by joining each pendent vertex of $K_{1,a}$ with every pendent vertex of $K_{1,b}$ (shown in Fig. 2). The non-pendent vertices of $K_{1,a}$ and $K_{1,b}$ are called the *roots* of J(a, b).

Lemma 3.6. Let G be a connected P_5 -free graph on $n \ge 5$ vertices with diameter d(G) = 3. If none of I_1 , I_2 , I_4 and I_5 is an induced subgraph of G, then G = J(a, b) for some positive integers $a, b \ge 1$ and a + b + 2 = n.

Proof. Let $d(v_1, v_4) = 3$ and $P = v_1 v_2 v_3 v_4$ a shortest path between v_1 and v_4 . By Lemma 3.4, at least one of I_i (shown in Fig. 1) is an induced subgraph of G for i = 1, 2, ..., 5. Since none of I_1 , I_2 , I_4 or I_5 is an induced subgraph of G, we obtain that G contains induced I_3 .

Note that $I_3 = J(2, 1)$ with roots v_1 and v_4 is an induced subgraph of G. We may assume that G' = J(a, b) with roots v_1 and v_4 is the maximal induced subgraph of G including J(2, 1). Denote by $U_1 = N_{G'}(v_1) = \{x_1, x_2, \ldots, x_a\}$ and $U_2 = N_{G'}(v_4) =$ $\{y_1, y_2, \ldots, y_b\}$. Obviously, $v_2, u \in U_1$ and $v_3 \in U_2$. In what follows we will show that G = J(a, b) with roots v_1 and v_4 .

By the way of contradiction, assume that $G \neq J(a, b)$. Then there exists $v \in V(G) \setminus V(G')$ such that $N_G(v) \cap V(G') \neq \emptyset$. Since $d(v_1, v_4) = 3$, v is adjacent to at most one of v_1 and v_4 . We claim that v is exactly adjacent to one of v_1 and v_4 . Otherwise, we have $v \nsim v_1, v_4$. Then $N_G(v) \cap U_1 \neq \emptyset$ or $N_G(v) \cap U_2 \neq \emptyset$. If v is adjacent to some vertex in $N_G(v) \cap U_1$ and some vertex in $N_G(v) \cap U_2$, say $v \sim x_1$ and $v \sim y_1$ (see Fig. 2 (1)), then we get the induced subgraph $G[v_1, x_1, y_1, v_4, v] = I_4$, a contradiction. If v is only adjacent to some vertex in $N_G(v) \cap U_1$, say $v \sim x_1$ (see Fig. 2 (2)), then we get the induced subgraph $G[v_1, x_1, y_1, v_4, v] = I_1$, a contradiction. If v is only adjacent to some vertex in

 $N_G(v) \cap U_2$, say $v \sim y_1$, then we also get the induced subgraph $G[v_1, x_1, y_1, v_4, v] = I_1$, a contradiction. Now we need to consider the following two situations.

Case 1. $v \sim v_1$ and $v \nsim v_4$;

First, we will show that $U_2 \subseteq N_G(v)$. Otherwise, there exists some vertex in U_2 not adjacent to v, say $v \nsim y_1$. Now, if $v \nsim x_1$ (see Fig. 2 (3)), then we get the induced subgraph $G[v, v_1, x_1, y_1, v_4] = P_5$, a contradiction; if $v \sim x_1$ (see Fig. 2 (4)), then we get the induced subgraph $G[v_1, x_1, y_1, v_4, v] = I_2$, a contradiction.

Next we will show that $N_G(v) \cap U_1 = \emptyset$. Otherwise, there exists some vertex in U_1 adjacent to v, say $v \sim x_1$. Recall that $v \sim y_1$ (see Fig. 2 (5)) according to the above arguments, we get the induced subgraph $G[v_1, x_1, y_1, v_4, v] = I_5$, a contradiction.

Summarising the above discussion, we know that $V(G') \cup \{v\}$ induces a subgraph J(a + 1, b) of G. This is impossible since G' = J(a, b) is assumed to be the maximal induced subgraph including J(2, 1).

Case 2. $v \sim v_4$ and $v \nsim v_1$;

As similar as Case 1, by symmetry we can also deduce that $G[V(G') \cup \{v\}] = J(a, b+1)$. This is also impossible.

We complete this proof. \Box

After the completion of the preparations, we get one of our main results.

Theorem 3.1. Let $G \in \mathcal{G}(n, n-3)$ with $n \ge 6$, then d(G) = 2.

Proof. By Lemma 3.1 and Remark 1, we get that G is P_5 -free and d(G) = 2 or d(G) = 3. Assume by contradiction that d(G) = 3. Let $d(v_1, v_4) = 3$ and $P = v_1 v_2 v_3 v_4$ a shortest path between v_1 and v_4 . By Lemma 3.4, G contains at least one of I_i (labelled as Fig. 1) as an induced subgraph for i = 1, 2, ..., 5.

Suppose that I_1 is an induced subgraph of G. Note that $d_G(v_4, u) = d_{I_1}(v_4, u) - 1 = 2$ or $d_G(v_4, u) = d_{I_1}(v_4, u) = 3$. We get that either M_1 or M'_1 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to I_1 , where

$$M_{1} = \begin{pmatrix} t_{1} & -1 & -2 & -3 & -2 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -2 \\ -3 & -2 & -1 & t_{4} & -2 \\ -2 & -1 & -2 & -2 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix} \begin{pmatrix} t_{1} & -1 & -2 & -3 & -2 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -2 \\ -3 & -2 & -1 & t_{4} & -3 \\ -2 & -1 & -2 & -3 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

If M_1 is a principal submatrix of $\mathcal{D}^L(G)$, by Lemma 3.5, there exists an eigenvector $x = (x_1, x_2, x_3, x_4, 0)$ satisfying $x_1 + x_2 + x_3 + x_4 = 0$ such that $M_1 x = \partial_1^L x$. Consider the fifth entry of both sides of $M_1 x = \partial_1^L x$, we have $-2x_1 - x_2 - 2x_3 - 2x_4 = 0$. It follows that $x_2 = 0$ and $x_1 + x_3 + x_4 = 0$. Next we consider the second entry of both sides of $M_1 x = \partial_1^L x$, we have $-x_1 - x_3 - 2x_4 = 0$. It follows that $x_4 = 0$ and $x_1 + x_3 = 0$. We consider the fourth entry of both sides of $M_1 x = \partial_1^L x$, we have $-3x_1 - x_3 = 0$. It follows

that $x_1 = x_3 = 0$. Thus, we have x = 0, a contradiction. If M'_1 is a principal submatrix of $\mathcal{D}^L(G)$, by Lemma 3.5, there exists an eigenvector $y = (0, y_2, y_3, y_4, y_5)^T$ satisfying

$$y_2 + y_3 + y_4 + y_5 = 0 \tag{1}$$

such that

$$M_1' y = \partial_1^L y. \tag{2}$$

Consider the first entry of both sides of Eq. (2), we have

$$-y_2 - 2y_3 - 3y_4 - 2y_5 = 0. (3)$$

Combining (1) and (3), we have $y_2 = y_4$. If $y_2 = y_4 = 0$, we consider the fourth entry of both sides of (2) and we get that $y_5 = 0$. It follows that y = 0, a contradiction. If $y_2 = y_4 \neq 0$, we consider the second entry of both sides of (2) and we get that $\partial_1^L = t_2 - \frac{y_3 + 2y_4 + y_5}{y_2} = t_2 - \frac{y_2 + y_3 + y_4 + y_5}{y_2}$. From (1), we have $\partial_1^L = t_2$. It contradicts Corollary 3.1.

Suppose that I_2 is an induced subgraph of G. Note that $d_G(v_4, u) = d_{I_2}(v_4, u) = 3$ or $d_G(v_4, u) = d_{I_2}(v_4, u) - 1 = 2$. We get that the matrix M_2 or M'_2 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to I_2 , where

$$M_{2} = \begin{pmatrix} t_{1} & -1 & -2 & -3 & -1 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -2 \\ -3 & -2 & -1 & t_{4} & -3 \\ -1 & -1 & -2 & -3 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix} \begin{pmatrix} t_{1} & -1 & -2 & -3 & -1 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -2 \\ -3 & -2 & -1 & t_{4} & -2 \\ -1 & -1 & -2 & -2 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

If M_2 is a principal submatrix of $\mathcal{D}^L(G)$, by Lemma 3.5, there exists an eigenvector $x = (x_1, 0, x_3, x_4, x_5)^T$ satisfying $x_1 + x_3 + x_4 + x_5 = 0$ such that $M_2 x = \partial_1^L x$. We successively consider the second, the fourth and the third entries of both sides of $M_2 x = \partial_1^L x$, we get that $x_3 = x_4 = 0$ and $x_1 + x_5 = 0$. If $x_1 = 0$, then $x_5 = 0$ and x = 0, a contradiction. If $x_1 \neq 0$, consider the first entry of both sides of $M_2 x = \partial_1^L x$, we get that $\partial_1^L = t_1 - \frac{x_5}{x_1} = t_1 + 1$. It contradicts Corollary 3.1. If M'_2 is a principal submatrix of $\mathcal{D}^L(G)$, by Lemma 3.5, there exists an eigenvector $y = (y_1, y_2, y_3, y_4, 0)^T$ satisfying $y_1 + y_2 + y_3 + y_4 = 0$ such that $M'_2 y = \partial_1^L y$. Consider the fifth entry of both sides of $M'_2 y = \partial_1^L y$, we have $-y_1 - y_2 - 2y_3 - 2y_4 = 0$. It leads to that $y_1 + y_2 = y_3 + y_4 = 0$. If $y_3 = y_4 = 0$, we consider the third entry of both sides of $M'_2 y = \partial_1^L y$ and we get that $y_1 = y_2 = 0$. It leads to that y = 0, a contradiction. If $y_1, y_2, y_3, y_4 \neq 0$, without loss of generality, we may suppose that y = (a, -a, 1, -1, 0). Consider the third entry of both sides of $M'_2 y = \partial_1^L y$, we have

 $\partial_1^L = t_3 + 1 - a$. By Corollary 3.1, we have a < 0. Consider the fourth entry of both sides of $M'_2 y = \partial_1^L y$, we have $\partial_1^L = t_4 + 1 + a$. By Corollary 3.1, we have a > 0, a contradiction.

Suppose that I_4 is an induced subgraph of G. We get that the matrix M_4 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to I_4 , where

$$M_4 = \begin{pmatrix} t_1 & -1 & -2 & -3 & -2 \\ -1 & t_2 & -1 & -2 & -1 \\ -2 & -1 & t_3 & -1 & -1 \\ -3 & -2 & -1 & t_4 & -2 \\ -2 & -1 & -1 & -2 & t_5 \end{pmatrix} \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ u \end{matrix}$$

By Lemma 3.5, there exists an eigenvector $x = (x_1, 0, x_3, x_4, x_5)^T$ satisfying $x_1 + x_3 + x_4 + x_5 = 0$ such that $M_4 x = \partial_1^L x$. Consider the second and the fourth entries of both sides of $M_4 x = \partial_1^L x$ successively, we get that $x_4 = 0$, $x_1 = x_3$ and $x_5 = -2x_1$. If $x_1 = x_3 = 0$, then x = 0, a contradiction. If $x_1 = x_3 \neq 0$, consider the third entry of both sides of $M_4 x = \partial_1^L x$ and we get that $\partial_1^L = t_3$. It contradicts Corollary 3.1.

Suppose that I_5 is an induced subgraph of G. We get that the matrix M_5 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to I_5 , where

$$M_{5} = \begin{pmatrix} t_{1} & -1 & -2 & -3 & -1 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -1 \\ -3 & -2 & -1 & t_{4} & -2 \\ -1 & -1 & -1 & -2 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

By Lemma 3.5, there exists an eigenvector $x = (x_1, 0, x_3, x_4, x_5)^T$ satisfying $x_1 + x_3 + x_4 + x_5 = 0$ such that $M_5 x = \partial_1^L x$. We successively consider the second and the fourth entries of both sides of $M_5 x = \partial_1^L x$, we have that $x_4 = 0$, $x_1 = x_3$ and $x_5 = -2x_3$. If $x_3 = 0$, we have x = 0, a contradiction. If $x_3 \neq 0$, consider the third entry of both sides of $M_5 x = \partial_1^L x$, we have $\partial_1^L = t_3$. It contradicts Corollary 3.1.

Suppose that I_3 is an induced subgraph of G. On the one hand, we get that the matrix M_3 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to I_3 , where

$$M_{3} = \begin{pmatrix} t_{1} & -1 & -2 & -3 & -1 \\ -1 & t_{2} & -1 & -2 & -2 \\ -2 & -1 & t_{3} & -1 & -1 \\ -3 & -2 & -1 & t_{4} & -2 \\ -1 & -2 & -1 & -2 & t_{5} \end{pmatrix} \begin{matrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{matrix}$$

By Lemma 3.5, there exists an eigenvector $x = (x_1, x_2, 0, x_4, x_5)^T$ satisfying $x_1 + x_2 + x_4 + x_5 = 0$ such that $M_3 x = \partial_1^L x$. We successively consider the third, the first and the fourth entries of both sides of $M_3 x = \partial_1^L x$, then we get that $x_1 = x_4 = 0$ and $x_2 + x_5 = 0$.

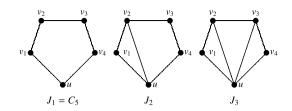


Fig. 3. The graphs in Lemma 3.7.

If $x_2 = x_5 = 0$, then x = 0, a contradiction. If $x_2 \neq 0$, without loss of generality, we may suppose that $x = (0, 1, 0, 0, -1)^T$. Consider the second entry of $M_3 x = \partial_1^L x$, we get that $\partial_1^L = t_2 + 2$. By Corollary 3.1, we get that

$$Tr(v_2) = \max_{v \in V(G)} Tr(v).$$
(4)

On the other hand, recall that G is P_5 -free. Moreover, by the arguments above, we have that G contains no induced I_1 , I_2 , I_4 or I_5 . Therefore, by Lemma 3.6, we have that G = J(a, b) with roots v_1 and v_4 . By simple calculation, we have $Tr(v_1) = a + 2b + 3$, $Tr(v_4) = 2a + b + 3$, Tr(x) = 2a + b + 1 for every $x \in N(v_1)$ and Tr(y) = 2b + a + 1 for every $y \in N(v_4)$. Note that $v_2 \in N(v_1)$. We get that

$$Tr(v_2) = 2a + b + 1 < 2a + b + 3 = Tr(v_4),$$

which contradicts (4).

We complete the proof. \Box

The result above showed that the graphs in $\mathcal{G}(n, n-3)$ have diameter 2. In fact, we can further obtain that G is the join of two graphs. To prove this, we need the following result.

Lemma 3.7. Let $G \in \mathcal{G}(n, n-3)$ with $n \ge 6$, then none of $J_1(=C_5)$, J_2 or J_3 (shown in Fig. 3) can be an induced subgraph of G.

Proof. Assume by contradiction that $J_1 = C_5$ is an induced subgraph of G. We get that the matrix N_1 is a principal submatrix of $\mathcal{D}^L(G)$ with respect to J_1 , where

$$N_{1} = \begin{pmatrix} t_{1} & -1 & -2 & -2 & -1 \\ -1 & t_{2} & -1 & -2 & -2 \\ -2 & -1 & t_{3} & -1 & -2 \\ -2 & -2 & -1 & t_{4} & -1 \\ -1 & -2 & -2 & -1 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

By Lemma 3.5, there exists an eigenvector $x = (0, x_2, x_3, x_4, x_5)^T$ satisfying $x_2 + x_3 + x_4 + x_5 = 0$ such that $N_1 x = \partial_1^L x$. From the first entry of $N_1 x = \partial_1^L x$, we have $-x_2 - x_3 + x_4 + x_5 = 0$.

 $2x_3 - 2x_4 - x_5 = 0$. Therefore, we have $x_3 + x_4 = 0$ and $x_2 + x_5 = 0$. If $x_3 = x_4 = 0$, consider the third entry of both sides of $N_1x = \partial_1^L x$ and we get that $x_2 = x_5 = 0$. It leads to that x = 0, a contradiction. If $x_2 = x_5 = 0$, consider the second entry of both sides of $N_1x = \partial_1^L x$ and we get that $x_3 = x_4 = 0$. It leads to that x = 0, a contradiction. If $x_2, x_3, x_4, x_5 \neq 0$, without loss of generality, we may suppose that $x = (0, a, 1, -1, -a)^T$. Thus, we have

$$\begin{pmatrix} t_1 & -1 & -2 & -2 & -1 \\ -1 & t_2 & -1 & -2 & -2 \\ -2 & -1 & t_3 & -1 & -2 \\ -2 & -2 & -1 & t_4 & -1 \\ -1 & -2 & -2 & -1 & t_5 \end{pmatrix} \begin{pmatrix} 0 \\ a \\ 1 \\ -1 \\ -a \end{pmatrix} = \partial_1^L \begin{pmatrix} 0 \\ a \\ 1 \\ -1 \\ -a \end{pmatrix}.$$
 (5)

Consider the fourth entry of both sides of (5), we have

$$\partial_1^L = t_4 + a + 1.$$

By Corollary 3.1, we have $a \ge 1$. Consider the fifth entry of both sides of Eq. (5), we have

$$\partial_1^L = t_5 + \frac{1}{a} + 2.$$

By Lemma 3.3, we get that ∂_1^L is integral. Therefore, a and $\frac{1}{a}$ are both integral. Thus, we have a = 1 and $\partial_1^L = t_4 + 2 = t_5 + 3$. It follows that

$$t_4 = t_5 + 1. (6)$$

On the other hand, by Lemma 3.5, there also exists an eigenvector $y = (y_1, 0, y_3, y_4, y_5)^T$ satisfying $y_1 + y_3 + y_4 + y_5 = 0$ such that $N_1 y = \partial_1^L y$. From the second entry of $N_1 y = \partial_1^L y$, we have $-y_1 - y_3 - 2y_4 - 2y_5 = 0$. Therefore, we have $y_4 + y_5 = 0$ and $y_1 + y_3 = 0$. If $y_1 = y_3 = 0$ or $y_4 = y_5 = 0$, we also get y = 0, a contradiction. If $y_1, y_3, y_4, y_5 \neq 0$, without loss of generality, we may suppose that $y = (b, 0, -b, 1, -1)^T$. Thus, we have

$$\begin{pmatrix} t_1 & -1 & -2 & -2 & -1 \\ -1 & t_2 & -1 & -2 & -2 \\ -2 & -1 & t_3 & -1 & -2 \\ -2 & -2 & -1 & t_4 & -1 \\ -1 & -2 & -2 & -1 & t_5 \end{pmatrix} \begin{pmatrix} b \\ 0 \\ -b \\ 1 \\ -1 \end{pmatrix} = \partial_1^L \begin{pmatrix} b \\ 0 \\ -b \\ 1 \\ -1 \end{pmatrix}.$$
 (7)

Consider the fourth and the fifth entries of both sides of Eq. (7), we have

$$\partial_1^L = t_4 - b + 1 = t_5 - b + 1.$$

It follows that $t_4 = t_5$, which contradicts (6).

Assume by contradiction that J_2 is an induced subgraph of G. We get that the matrix N_2 is a principal submatrix of \mathcal{D}^L with respect to J_2 , where

$$N_{2} = \begin{pmatrix} t_{1} & -1 & -2 & -2 & -1 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -2 \\ -2 & -2 & -1 & t_{4} & -1 \\ -1 & -1 & -2 & -1 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

By Lemma 3.5, there exists an eigenvector $x = (x_1, x_2, x_3, x_4, 0)^T$ satisfying $x_1 + x_2 + x_3 + x_4 = 0$ such that $N_2 x = \partial_1^L x$. We successively consider the fifth, the third, the first and the fourth entries of both sides of $N_2 x = \partial_1^L x$, then we get that x = 0, a contradiction.

Assume by contradiction that J_3 is an induced subgraph of G. We get that the matrix N_3 is a principal submatrix of \mathcal{D}^L with respect to J_3 , where

$$N_{3} = \begin{pmatrix} t_{1} & -1 & -2 & -2 & -1 \\ -1 & t_{2} & -1 & -2 & -1 \\ -2 & -1 & t_{3} & -1 & -1 \\ -2 & -2 & -1 & t_{4} & -1 \\ -1 & -1 & -1 & -1 & t_{5} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ u \end{pmatrix}$$

By Lemma 3.5, there exists an eigenvector $x = (x_1, x_2, 0, x_4, x_5)^T$ satisfying $x_1 + x_2 + x_4 + x_5 = 0$ such that $N_3 x = \partial_1^L x$. Consider the third, the first, the fourth and the second entries of both sides of $N_3 x = \partial_1^L x$ successively, we get that x = 0, a contradiction. \Box

Using the above tools, we get the following result.

Theorem 3.2. Let $G \in \mathcal{G}(n, n-3)$ with $n \ge 6$, then \overline{G} is disconnected. It means that G is the join of some connected graphs.

Proof. By Lemma 2.2, it suffices to show that G contains no induced P_4 . Assume by contradiction that G contains an induced $P_4 = v_1 v_2 v_3 v_4$. By Theorem 3.1, we have d(G) = 2. Therefore, there exists a vertex $u \in V(G)$ such that $u \sim v_1, v_4$. It follows that at least one of J_1, J_2 and J_3 will be an induced subgraph of G, contradicts Lemma 3.7. \Box

For any graph $G \in \mathcal{G}(n, n-3)$, we see that G has at most four distinct eigenvalues, and we also have $\partial_{n-1}^{L}(G) = n$ by Theorems 2.3 and 3.2. Denote by

$$\mathcal{H}_1(n) = \{ G \in \mathcal{G}(n, n-3) \mid Spec_{\mathcal{L}}(G) = [(\partial_1^L)^{n-3}, \partial_{n-2}^L, \partial_{n-1}^L = n, \partial_n^L = 0] \},\$$

and

$$\mathcal{H}_{2}(n) = \{ G \in \mathcal{G}(n, n-3) \mid Spec_{\mathcal{L}}(G) = [(\partial_{1}^{L})^{n-3}, \partial_{n-2}^{L} = \partial_{n-1}^{L} = n, \partial_{n}^{L} = 0] \}.$$

496

Therefore, $\mathcal{H}_1(n)$ and $\mathcal{H}_2(n)$ are the sets of graphs with four and three distinct eigenvalues in $\mathcal{G}(n, n-3)$, respectively. Thus we have the disjoint decomposition

$$\mathcal{G}(n, n-3) = \mathcal{H}_1(n) \cup \mathcal{H}_2(n).$$

Mohammadian [7] gave the following result.

Lemma 3.8 ([7], Theorem 8). Let G be a graph on $n \ge 5$ vertices whose distinct Laplacian eigenvalues are $0 < \alpha < \beta < \gamma$. Then the multiplicity of α is n-3 if and only if G is one of the graphs $K_{2,n-2}$, $K_{n/2,n/2} + e$ or $K_{1,n-1} + e$, where $K_{n/2,n/2} + e$ and $K_{1,n-1} + e$ are the graphs obtained from $K_{n/2,n/2}$ and $K_{1,n-1}$, respectively, by adding an edge e joining any two non-adjacent vertices.

Note that, when d(G) = 2, there exists a correspondence between the distance Laplacian spectrum and the Laplacian spectrum of G. We have the following result.

Corollary 3.2. For an integer $n \ge 6$, we have $\mathcal{H}_1(n) = \{K_{2,n-2}, K_{n/2,n/2} + e, K_{1,n-1} + e\}$, and their distance Laplacian spectra are given by

$$\begin{cases} \operatorname{Spec}_{\mathcal{L}}(K_{2,n-2}) = \{(2n-2)^{n-3}, n+2, n, 0\} \\ \operatorname{Spec}_{\mathcal{L}}(K_{n/2,n/2}+e) = \{(\frac{3n}{2})^{n-3}, \frac{3n}{2}-2, n, 0\} \\ \operatorname{Spec}_{\mathcal{L}}(K_{1,n-1}+e) = \{(2n-1)^{n-3}, 2n-3, n, 0\} \end{cases}$$
(8)

Proof. Let $G \in \mathcal{H}_1(n)$ and $Spec_{\mathcal{L}}(G) = \{(\partial_1^L)^{n-3}, \partial_{n-2}^L, n, 0\}$ where $\partial_1^L > \partial_{n-2}^L > n$. By Theorem 3.1, we have d(G) = 2. Therefore, by Theorem 2.2, the Laplacian spectrum of G is $\{n, 2n - \partial_{n-2}^L, (2n - \partial_1^L)^{n-3}, 0\}$. Thus, we get that $G \in \{K_{2,n-2}, K_{n/2,n/2} + e, K_{1,n-1} + e\}$ from Lemma 3.8. Conversely, note that all of $K_{2,n-2}, K_{n/2,n/2} + e$ and $K_{1,n-1} + e$ are the join of two graphs, by Lemma 2.1 (iv) and Theorem 2.2, we obtain their distance Laplacian spectra, which are shown in (8). Therefore, $K_{2,n-2}, K_{n/2,n/2} + e, K_{1,n-1} + e \in \mathcal{H}_1(n)$, and the result follows. \Box

In what follows we characterise $\mathcal{H}_2(n)$.

Lemma 3.9. For an integer $n \ge 6$, we have $\mathcal{H}_2(n) = \{K_2 \nabla (n-2) K_1, K_1 \nabla K_{\frac{n-1}{2}, \frac{n-1}{2}}, K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}\}$, and their distance Laplacian spectra are given by

$$\begin{cases} \operatorname{Spec}_{\mathcal{L}}(K_2 \nabla (n-2)K_1) = \{(2n-2)^{n-3}, n^2, 0\} \\ \operatorname{Spec}_{\mathcal{L}}(K_1 \nabla K_{\frac{n-1}{2}, \frac{n-1}{2}}) = \{((3n-1)/2)^{n-3}, n^2, 0\} \\ \operatorname{Spec}_{\mathcal{L}}(K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}) = \{(4n/3)^{n-3}, n^2, 0\} \end{cases}$$
(9)

Proof. Let $G \in \mathcal{H}_2(n)$ and $Spec_{\mathcal{L}}(G) = \{(\partial_1^L)^{n-3}, n^2, 0\}$ where $\partial_1^L > n$. By Theorem 3.1, we get that d(G) = 2. Therefore, by Theorem 2.2, the Laplacian spectrum

of G is $\{n^2, (2n - \partial_1^L)^{n-3}, 0\}$. By Lemma 2.1 (iii), the Laplacian spectrum of \overline{G} is $\{(\partial_1^L - n)^{n-3}, 0^3\}$. By Lemma 2.1 (i), \overline{G} has exactly three components, denoted by G_1, G_2 and G_3 . Moreover, by Lemma 2.1 (ii), G_1, G_2 and G_3 are either complete graphs of the same order or isolate vertices. If none of them is an isolate vertex, then $G_1 \cong G_2 \cong G_3 \cong K_{n/3}$. It follows that $G = \overline{3K_{n/3}} = K_{\frac{n}{3},\frac{n}{3},\frac{n}{3}}$. If there is exactly one of them being an isolate vertex, say G_3 , then $G_1 \cong G_2 \cong K_{(n-1)/2}$. It follows that $G = \overline{2K_{(n-1)/2} \cup K_1} = K_1 \nabla K_{\frac{n-1}{2},\frac{n-1}{2}}$. If there are exactly two of them being isolate vertices, say G_2 and G_3 , then $G_1 \cong K_{n-2}$. It follows that $G = \overline{K_{n-2} \cup 2K_1} = K_2 \nabla (n-2)K_1$. Conversely, note that all of $K_2 \nabla (n-2)K_1, K_1 \nabla K_{\frac{n-1}{2},\frac{n-1}{2}}$ and $K_{\frac{n}{3},\frac{n}{3},\frac{n}{3}}$ are the join of two graphs, by Lemma 2.1 (iv) and Theorem 2.2, we obtain their distance Laplacian spectra, which are shown in (9). Therefore, $K_2 \nabla (n-2)K_1, K_1 \nabla K_{\frac{n-1}{2},\frac{n-1}{2}}, K_{\frac{n}{3},\frac{n}{3},\frac{n}{3}} \in \mathcal{H}_2(n)$, and the result follows. \Box

Recall that $\mathcal{G}(n, n-3) = \mathcal{H}_1(n) \cup \mathcal{H}_2(n)$. Combining Corollary 3.2 and Lemma 3.9, we completely determine $\mathcal{G}(n, n-3)$ in the following result.

Theorem 3.3. For an integer $n \ge 6$, we have

$$\mathcal{G}(n,n-3) = \{K_{2,n-2}, K_{1,n-1}+e, K_{n/2,n/2}+e, K_2 \nabla(n-2)K_1, K_1 \nabla K_{\frac{n-1}{2}, \frac{n-1}{2}}, K_{\frac{n}{3}, \frac{n}{3}, \frac{n}{3}}\}$$

Remark 2. By using the software SageMath, we get the graphs with $m(\partial_1^L) = n - 3$ for n = 4 and n = 5. That is,

$$\begin{cases} \mathcal{G}(4,1) = \{P_4, K_{1,3} + e, K_2 \nabla 2K_1\} \\ \mathcal{G}(5,2) = \{K_{2,3}, K_{1,4} + e, K_2 \nabla 3K_1, K_1 \nabla K_{2,2}, C_5\} \end{cases}$$

We end up this paper by the following result.

Corollary 3.3. Let $G \in \mathcal{G}(n, n-3)$ with $n \geq 5$ then G is determined by its distance Laplacian spectrum.

Proof. Let $H \in \mathcal{G}(n)$ with $Spec_{\mathcal{L}}(H) = Spec_{\mathcal{L}}(G)$. We get that $H \in \mathcal{G}(n, n-3)$. Then, the result follows by pairwise comparing the distance Laplacian spectra of graphs in $\mathcal{G}(n, n-3)$, which are presented in (8) and (9). \Box

Acknowledgements

The authors are grateful to the referee for helpful comments. This research war supported by the National Natural Science Foundation of China (Grant Nos. 11671344, 11531011).

References

- M. Aouchiche, P. Hansen, Distance spectra of graphs: a survey, Linear Algebra Appl. 458 (2014) 301–384.
- [2] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21–33.
- [3] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, New York, 2010.
- [4] D. Corneil, H. Lerchs, L. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174.
- [5] Celso M. Da Silva Jr., et al., A note on a conjecture for the distance Laplacian matrix, Electron. J. Linear Algebra 31 (2016) 60–68.
- [6] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Uni. Press, New York, 1992.
- [7] A. Mohammadian, B. Tayfeh-Rezaie, Graphs with four distinct Laplacian eigenvalues, J. Algebraic Combin. 34 (2011) 671–682.
- [8] M. Nath, S. Paul, On the distance Laplacian spectra of graphs, Linear Algebra Appl. 460 (2014) 97–110.
- [9] F. Tian, D. Wong, J. Rou, Proof for four conjectures about the distance Laplacian and distance signless Laplacian eigenvalues of a graph, Linear Algebra Appl. 471 (2015) 10–20.