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A graph is called a threshold graph if it does not contain in-
duced C4, P4 or 2K2. Such graphs have numerous applications 
in computer science and psychology, and they also have nice 
spectral properties. In this paper, we consider the distance 
matrix of a connected threshold graph. We show that there 
are no distance eigenvalues of threshold graphs lying in the in-
terval (−2, −1) and all the eigenvalues, other than −2 or −1, 
are simple. Besides, we determine all threshold graphs with 
distinct distance eigenvalues.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let Γ be a connected graph with vertex set V = {v1, v2 . . . , vn}. The distance between 
vi and vj , denoted by d(vi, vj) (or di,j for short), is the length of a shortest path between 
vi and vj . The neighbourhood of vi is the collection of all vertices adjacent to vi, denoted 
by N(vi), that is, N(vi) = {vj | d(vi, vj) = 1}. The diameter of Γ, denoted by d(Γ), is the 
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Fig. 1. Example of threshold graphs.

largest distance in Γ. The distance matrix of Γ, denoted by D(Γ), is the n ×n matrix whose 
(i, j)-entry is equal to d(vi, vj), for 1 ≤ i, j ≤ n. The eigenvalues of D(Γ), listed by ∂1 ≥
∂2 ≥ · · · ≥ ∂n, are the distance eigenvalues of Γ. The multiset of distance eigenvalues of Γ
is the distance spectrum of Γ, always denoted by SpecD(Γ) = {[∂1]m1 , . . . , [∂s]ms}, where 
∂1 > · · · > ∂s and the superscript mi is the multiplicity of ∂i. We refer the reader to the 
survey paper [1], for more details about the backgrounds and applications of distance 
matrix.

If a graph contains no induced C4, P4 or 2K2, then it is a threshold graph. A threshold 
graph can be obtained by repeatedly performing one of the following two operations: 
(a) adding a new vertex adjacent to none of the former vertices (such vertex is called 
a separate vertex); (b) adding a new vertex adjacent to all of the former vertices (such 
vertex is called a dominating vertex). Let Γ be a threshold graph of order n, whose 
vertex set is labelled as {v1, . . . , vn} such that vi is the added vertex in the i-th step 
of the operations. We can use a {0, 1}-sequence b = (b1, . . . , bn) to represent Γ, where 
bi = 0 if vi is a separate vertex and bi = 1 if vi is a dominating vertex. As usual, we set 
b1 = 0. Obviously, Γ is connected if and only if bn = 1. Note that the successive separate 
vertices have the same properties and the successive dominating vertices have the same 
properties. We collect the successive 0s and 1s together in b. Therefore, the sequence 
b can be written as b = (0s1 , 1t1 , . . . , 0sm , 1tm), where si, ti ≥ 1 for 1 ≤ i ≤ m and 
m ≥ 1. This sequence is the representation sequence of Γ, and Γ is uniquely determined 
by its representation sequence. For example, the threshold graphs with representation 
sequences (02, 12, 0, 1) and (0, 1, 02, 12) are shown in Fig. 1.

Threshold graphs were first introduced by Chvátal and Hammer [19] and Henderson 
and Zalcstein [8] in 1977. After that, threshold graphs have been paid close extensive 
attention because of their numerous applications in computer science and psychology 
[19]. Recently, many mathematicians studied the eigenvalues of the adjacency matrix 
of threshold graphs. In 2011, Sciriha and Farrugia [21] gave some spectral properties of 
adjacency eigenvalues of threshold graphs. In 2013, Bapat [2] obtained the determinant 
of the adjacency matrix of threshold graphs and he gave the nullity of threshold graphs 
as well. In the same year, Jacobs et al. [12] presented an O(n) algorithm for constructing 
a diagonal matrix congruent to Bx = A + xI for any x. By using this method, they 
published several papers [12,14,15] to investigate the properties of adjacency eigenvalues 
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of threshold graphs from 2013 to 2015. Especially, they obtain the inertia of the adjacency 
matrix of threshold graphs and they show that all eigenvalues of threshold graph, other 
than 0 or −1, are simple. In 2017, Banerjee and Mehatari [3] studied the eigenvalues of 
the normalized matrix (which is similar to the Randić matrix) of threshold graphs.

In this paper, we focus attention on the distance matrix of threshold graphs because 
the distance matrix seems to contain more informations of a graph than other matrices. It 
not only reflects whether two vertices are adjacent or not, but also the distance between 
them. Besides, it is hot topic to study the eigenvalues of the distance matrix of a graph 
ever since the appearance of the paper [6] by Graham and Pollack, which established 
a relationship between the number of negative eigenvalues of the distance matrix and 
the addressing problem in data communication systems. In this paper, we show that 
all distance eigenvalues of threshold graphs, other than −2 or −1, are simple, a fact 
reported in [13]. Moreover, we prove that there is no distance eigenvalue that lies in the 
interval (−2, −1). We obtain formulas for the multiplicities of −2 and −1, the formulas 
for −2 also reported in [20]. As another main result, we find that there are exactly 
�n

2 � threshold graphs with distinct distance eigenvalues and completely determine such 
graphs as well.

2. Preliminaries

We start with the equitable partition of a symmetric real matrix. The knowledge of 
an equitable partition contains very rich content and it is a very powerful tool in spectral 
graph theory. Here we give a brief description of it and we refer the reader to Brouwer 
and Haemers [4, Section 2.3] or Godsil and Royle [5, Section 9.3] for details.

Suppose that M is an n × n symmetric real matrix whose rows and columns are 
indexed by X = {1, . . . , n}. Let Π: X = X1 ∪ · · · ∪Xm be a partition of X. The matrix 
M can be written as

M =

⎛
⎜⎝

M1,1 · · · M1,m
...

...
Mm,1 · · · Mm,m

⎞
⎟⎠

where Mi,j is the submatrix of M whose rows and columns are induced by Xi and Xj , 
respectively, for 1 ≤ i, j ≤ m. Let bij be the average row sum of Mi,j . Then Bm =
(bij)m×m is the quotient matrix of M with respect to the partition Π. Especially, if the 
row sum of each block Mi,j is a constant, then the partition is an equitable partition. 
Note that the quotient matrix Bm may not be symmetric even for equitable partitions. 
The characteristic matrix P is the n ×m matrix whose j-th column is the characteristic 
vector of Xj for 1 ≤ j ≤ m. Therefore, it is not hard to verify that MP = PBm. This 
fact implies the following result.
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Lemma 2.1 ([5, Theorem 9.1.1]). Let M be a real symmetric matrix and let Π be an 
equitable partition of M with quotient matrix Bm. Then the characteristic polynomial of 
the quotient matrix Bm divides the characteristic polynomial of M .

Suppose that Γ is a connected graph of order n. Let D be the distance matrix of 
Γ and Π: V = V1 ∪ · · · ∪ Vm a partition of the vertex set V . Suppose that Dij is the 
submatrix of D whose rows and columns are induced by Vi and Vj for 1 ≤ i, j ≤ m. For 
u ∈ Vi, the row sum of Dij corresponding to u is 

∑
v∈Vj

d(u, v). Thus, the partition Π
is an equitable partition if, for 1 ≤ i, j ≤ m and u ∈ Vi, the value 

∑
v∈Vj

d(u, v) is a 
constant independent of the choice of u. In this case, we say that Π is a distance equitable 
partition of Γ. Therefore, we get the following result by applying Lemma 2.1 to distance 
matrix.

Corollary 2.1. Let Γ be a connected graph. If Π is a distance equitable partition of Γ with 
quotient matrix Bm, then all eigenvalues of Bm are distance eigenvalues of Γ.

Next, we introduce the well-known interlacing theorem, which is another important 
result in spectral graph theory. A principal submatrix of a matrix M is obtained by 
removing the same corresponding rows and columns from M .

Lemma 2.2 ([5, Theorem 9.3.3]). Let M be a Hermitian matrix of order n, and let H
be a principal submatrix of M of order m. If θ1(M) ≥ θ2(M) ≥ · · · ≥ θn(M) lists 
the eigenvalues of M and μ1(H) ≥ μ2(H) ≥ · · · ≥ μm(H) the eigenvalues of H, then 
θn−m+i(M) ≤ μi(H) ≤ θi(M) for 1 ≤ i ≤ m.

At last, we end up this part by the following two results, which are from [18].

Lemma 2.3 ([18, Lemma 3.4]). Let Γ be a connected graph and S a subset of V (Γ) with 
size p. If S is a clique and N(u) \S = N(v) \S for all u, v ∈ S, then −1 is an eigenvalue 
of D(Γ) with multiplicity at least p − 1.

Lemma 2.4 ([18, Lemma 3.5]). Let Γ be a connected graph and S a subset of V (Γ) with 
size q. If S is an independent set and N(u) = N(v) for all u, v ∈ V (S), then −2 is an 
eigenvalue of D(Γ) with multiplicity at least q − 1.

3. The distance eigenvalues of threshold graphs

We may always assume that Γ is a threshold graph with representation sequence 
(0s1 , 1t1 , . . . , 0sm , 1tm), where si, tj ≥ 1 for 1 ≤ i, j ≤ m and m ≥ 1. Denote by s =
s1 + · · · + sm and t = t1 + · · · + tm, so Γ contains s + t vertices. By the expression of 
the representation sequence of Γ, we have V (Γ) = U1 ∪ V1 ∪ · · · ∪ Um ∪ Vm, where U1 is 
the set of the first s1 vertices, V1 is the set of the next t1 vertices, and so on. In what 
follows, we always use these notations if there are no additional statements.
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By simple observations, we find two special distance eigenvalues of Γ.

Lemma 3.1. The graph Γ has −2 and −1 as distance eigenvalues with multiplicities at 
least s −m and t −m, respectively.

Proof. Note that Ui is the set of independent vertices of size si for 1 ≤ i ≤ m. For 
u, v ∈ Ui, both of them are adjacent to only the dominating vertices after them. Thus, we 
have N(u) = N(v). By Lemma 2.4, Ui leads to a distance eigenvalue −2 with multiplicity 
at least si − 1. Note that, from the proof of Lemma 2.4 [18], for i �= j, the eigenvectors 
corresponding to −2 induced by Ui and Uj are pairwise independent. It means that Γ
has −2 as a distance eigenvalue with multiplicity at least (s1−1) + · · ·+(sm−1) = s −m.

Similarly, for 1 ≤ j ≤ m, the subset Vi is a clique of order tj and N(u) \Vj = N(v) \Vj

for all u, v ∈ Vj . By Lemma 2.3, Vj leads to a distance eigenvalue −1 with multiplicity 
at least tj − 1. Note that, from the proof of Lemma 2.3 [18], for i �= j, the eigenvector 
corresponding to −1 induced by Vi and Vj are pairwise independent. It means that Γ has 
−1 as a distance eigenvalue with multiplicity at least (t1−1) + · · ·+(tm−1) = t −m. �

Next, we determine the other distance eigenvalues of Γ by using the equitable par-
tition. Obviously, the graph Γ has a partition Π: V = U1 ∪ V1 ∪ · · · ∪ Um ∪ Vm. We 
show that Π is indeed a distance equitable partition. Note that Γ has diameter 2. By the 
construction of Γ, for u ∈ Ui and x �= u, we have

d(u, x) =

⎧⎪⎨
⎪⎩

2, x ∈ Uk, 1 ≤ k ≤ m

2, x ∈ Vk, 1 ≤ k ≤ i− 1
1, x ∈ Vk, i ≤ k ≤ m

.

It follows that

∑
x∈Uj

d(u, x) =
{

2(si − 1), j = i

2sj , j �= i
and

∑
y∈Vj

d(u, y) =
{

2tj , j ≤ i− 1
tj , j ≥ i

which are independent of the choice of u. For v ∈ Vi and x �= v, we have

d(v, x) =

⎧⎪⎨
⎪⎩

1, x ∈ Uk, 1 ≤ k ≤ i

2, x ∈ Uk, i + 1 ≤ k ≤ m

1, x ∈ Vk, 1 ≤ k ≤ m

.

It follows that

∑
x∈Uj

d(v, x) =
{

sj , j ≤ i

2sj , j ≥ i + 1
and

∑
y∈Vj

d(y, v) =
{

ti − 1, j = i

tj , j �= i

which are independent of the choice of v. It means that Π is a distance equitable partition 
with quotient matrix
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Bm =

⎛
⎜⎜⎜⎜⎜⎜⎝

2(s1 − 1) t1 2s2 t2 · · · 2sm tm
s1 t1 − 1 2s2 t2 · · · 2sm tm
2s1 2t1 2(s2 − 1) t2 · · · 2sm tm
s1 t1 s2 t2 − 1 · · · 2sm tm
...

...
...

...
...

...
2s1 2t1 2s2 2t2 · · · 2(sm − 1) tm
s1 t1 s2 t2 · · · sm tm − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

Note that the columns corresponding to si contain only si’s and columns corresponding 
to ti contain only ti’s. By Corollary 2.1, the eigenvalues of Bm are distance eigenvalues 
of Γ. Thus, we focus on the eigenvalues of Bm. Keep in mind that Bm always denotes 
the quotient matrix given in (1).

Lemma 3.2. If x = (x1, y1, . . . , xm, ym)T is an eigenvector of Bm corresponding to eigen-
value λ, then we have

(i) (λ + 1)y1 = (λ + 2 − s1)x1;
(ii) (2λ + 2 − tm)ym = (λ + 2)xm.
Moreover, if m ≥ 2, we have
(iii) tiyi = (λ + 2)(xi+1 − xi) for 1 ≤ i ≤ m − 1;
(iv) si+1xi+1 = (λ + 1)(yi − yi+1) for 1 ≤ i ≤ m − 1.

Proof. From (1) and the equation Bmx = λx, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx1 = 2(s1 − 1)x1 + t1y1 + 2s2x2 + t2y2 + · · · + 2smxm + tmym

λy1 = s1x1 + (t1 − 1)y1 + 2s2x2 + t2y2 + · · · + 2smxm + tmym

· · · · · · · · · · · · · · ·
λxi = 2s1x1 + 2t1y1 + · · · + 2si−1xi−1 + 2ti−1yi−1 + 2(si − 1)xi + tiyi

+2si+1xi+1 + ti+1yi+1 + · · · + 2smxm + tmym

λyi = s1x1 + t1y1 + · · · + si−1xi−1 + ti−1yi−1 + sixi + (ti − 1)yi
+2si+1xi + ti+1yi · · · + 2smxm + tmym

λxi+1 = 2s1x1 + 2t1y1 + · · · + 2sixi + 2tiyi + 2(si+1 − 1)xi+1 + ti+1yi+1

+2si+2xi+2 + ti+2yi+2 + · · · + 2smxm + tmym

λyi+1 = s1x1 + t1y1 + · · · + sixi + tiyi + si+1xi+1 + (ti+1 − 1)yi+1

+2si+2xi+2 + ti+2yi+2 · · · + 2smxm + tmym

· · · · · · · · · · · · · · ·
λxm = 2s1x1 + 2t1y1 + 2s2x2 + 2t2y2 + · · · + 2(sm − 1)xm + tmym

λym = s1x1 + t1y1 + s2x2 + t2y2 + · · · + smxm + (tm − 1)ym

. (2)

Subtracting the second equation from the first in (2), we have λx1 − λy1 = (s1 −
2)x1 + y1, which leads to (i). Multiplying the last equation in (2) by 2 and subtracting 
from the previous equation, we have λxm − 2λym = −2xm − (tm − 2)ym, which leads to 
(ii). Moreover, if m ≥ 2, for 1 ≤ i ≤ m − 1, subtracting the (2i-1)-th equation from the 
(2i+1)-th in (2), we have λxi+1−λxi = 2xi + tiyi−2xi+1, which leads to (iii). Similarly, 
we have λyi+1 − λyi = yi − si+1xi − yi+1, which leads to (iv). �

By Lemma 3.2, we get some properties of the eigenvalues of Bm.
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Corollary 3.1. If λ is an eigenvalue of Bm, then λ �= −2. If, additional, s1 ≥ 2, then 
λ �= −1. Furthermore, if s1 = 1, then −1 is a simple eigenvalue of Bm.

Proof. Let x = (x1, y1, . . . , xm, ym)T be an eigenvector of Bm corresponding to λ.
Suppose to the contrary that λ = −2. By Lemma 3.2 (ii), since tm > 0, we have 

ym = 0. If m = 1, since s1 > 0, Lemma 3.2 (i) implies x1 = 0 and thus x = (x1, y1)T = 0, 
a contradiction. If m ≥ 2, since ti > 0, Lemma 3.2 (iii) implies yi = 0 for 1 ≤ i ≤ m − 1. 
Therefore, from Lemma 3.2 (i) and (iv), since si > 0, we have xi = 0 for 1 ≤ i ≤ m. It 
follows that x = 0, a contradiction.

Assume that s1 ≥ 2. Suppose to the contrary that λ = −1. If m = 1, since λ +2 −s1 =
1 − s1 < 0, Lemma 3.2 (i) implies x1 = 0. It leads to y1 = 0 by Lemma 3.2 (ii) because 
t1 > 0. Thus, we have x = 0, a contradiction. If m ≥ 2, since 1 − s1 < 0 and si > 0, 
Lemma 3.2 (i) and (iv) imply xi = 0 for 1 ≤ i ≤ m. This leads to yi = 0 for 1 ≤ i ≤ m −1
by Lemma 3.2 (iii) because ti > 0. At last, considering the first equation in (2), we also 
get ym = 0 because tm > 0. Thus, we have x = 0, a contradiction.

Assume that s1 = 1 and λ = −1. If m = 1, then we have x1 = −t1y1 by Lemma 3.2 (ii), 
and thus −1 is a simple eigenvalue of B1 with eigenvector x = (−t1, 1)T . In what follows 
we assume m ≥ 2. Since si > 0, Lemma 3.2 (iv) implies xi = 0 for 2 ≤ i ≤ m. It leads to 
ym = 0 by Lemma 3.2 (ii) because tm > 0. If m = 2, then we have x1 + t1y1 = 0 by the 
last equation in (2). It follows that x1 = −t1y1. Thus, λ = −1 is a simple eigenvalue of 
B2 with eigenvector x = (−t1, 1, 0, 0)T . If m ≥ 3, since xi = 0 for 2 ≤ i ≤ m and ti > 0, 
Lemma 3.2 (iii) implies yi = 0 for 2 ≤ i ≤ m −1. By considering the last equation in (2), 
we have x1 + t1y1 = 0. It follows that x1 = −t1y1 and thus λ = −1 is a simple eigenvalue 
of Bm with eigenvector x = (−t1, 1, 0, . . . , 0)T . �
Corollary 3.2. All eigenvalues of Bm are simple.

Proof. Toward to a contradiction, suppose that λ is an eigenvalue of Bm with multiplicity 
at least two. Therefore, there exist two independent eigenvectors of Bm corresponding 
to λ. By taking a linear combination of them, there exists an eigenvector x of Bm

corresponding to λ, where x = (x1, y1, · · · , xm, ym)T such that x1 = 0. By Corollary 3.1, 
we have λ �= −2 or −1. Thus, from Lemma 3.2 (i), we have y1 = 0. If m = 1, then 
x = (x1, y1)T = 0, a contradiction. If m ≥ 2, since x1 = y1 = 0, then x2 = 0 by 
Lemma 3.2 (iii). Note that Lemma 3.2 (iii) means that xi+1 = 0 if xi = yi = 0, and (iv) 
means that yi+1 = 0 if yi = xi+1 = 0. By using (iii) and (iv) repeatedly, we conclude 
x = 0, a contradiction. �
Corollary 3.3. There is no eigenvalue of Bm lies in the interval (−2, −1).

Proof. Suppose to the contrary that λ ∈ (−2, −1) is an eigenvalue of Bm with eigenvector 
x = (x1, y1, . . . , xm, ym)T . Denote by α = λ + 2 ∈ (0, 1). At first, we claim that x1 �= 0
since otherwise we will get x = 0 as the proof of Corollary 3.2. Thus, without loss 
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of generality, suppose that x1 = 1. From Lemma 3.2 (i), we have y1 = α−s1
α−1 > 0. 

If m = 1, by Lemma 3.2 (ii), we have y1 = α
2α−2−t1

< 0, a contradiction. It only 
needs to consider the case of m ≥ 2. In what follows, we prove that (x1, . . . , xm) and 
(y1, . . . , ym) are two strictly increase sequences with positive entries. From Lemma 3.2
(iii), we have x2 − x1 = t1

α y1 > 0, and so x2 > x1 > 0. From Lemma 3.2 (iv), we have 
y1 − y2 = s2

α−1x2 < 0, and so y2 > y1 > 0. Assume that (x1, . . . , xk) and (y1, . . . , yk) are 
two strictly increase sequences with positive entries for some integer k with k ≥ 2. We 
consider the sequences (x1, . . . , xk, xk+1) and (y1, . . . , yk, yk+1). From Lemma 3.2 (iii), 
we have xk+1 − xk = tk

α yk > 0, and so xk+1 > xk > 0. From Lemma 3.2 (iv), we have 
yk − yk+1 = sk+1

α−1 xk+1 < 0, and so yk+1 > yk > 0. Thus, we have xm, ym > 0. However, 
from Lemma 3.2 (ii) we have xm

ym
= 2α−2−tm

α < 0, a contradiction. �
In order to get more properties of the eigenvalues of Bm, an interlacing theorem for 

Bm is needed. However, the quotient matrix Bm is not symmetric that does not satisfy 
the condition of the interlacing theorem. The following lemma shows that the interlacing 
theorem is also true for Bm.

Lemma 3.3. Let C be a principal submatrix of Bm with size h. If λ1 ≥ · · · ≥ λ2m lists 
the eigenvalues of Bm and μ1 ≥ · · · ≥ μh the eigenvalues of C, then λ2m−h+i ≤ μi ≤ λi

for 1 ≤ i ≤ h.

Proof. Recall that Π: V = U1 ∪ V1 ∪ · · · ∪ Um ∪ Vm is a distance equitable 
partition of the threshold graph Γ with quotient matrix Bm. Denote by D =
diag(√s1, 

√
t1, . . . , 

√
sm, 

√
tm) the diagonal matrix with the (2i − 1)-th entry equal to √

si and the 2i-th entry equal to 
√
ti for 1 ≤ i ≤ m. Note that the matrix DBmD−1

is obtained by respectively multiplying the (2i − 1)-th row and the (2i − 1)-th column 
of Bm by 

√
si and 1/√si, and by respectively multiplying the 2i-th row and the 2i-th 

column of Bm by 
√
ti and 1/

√
ti. Therefore, we have

B′
m = DBmD−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(s1 − 1)
√
s1t1 2√s1s2 · · · 2√s1sk

√
s1tk√

t1s1 t1 − 1 2
√
t1s2 · · · 2

√
t1sk

√
t1tk

2√s2s1 2
√
s2t1 2(s2 − 1) · · · 2√s2sk

√
s2tk

...
...

...
...

...
2√sks1 2

√
skt1 2√sks2 · · · 2(sk − 1)

√
sktk√

tks1
√
tkt1

√
tks2 · · ·

√
tksk tk − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is symmetric. Therefore, Bm and B′
m are similar and have the same eigenvalues, 

that is, λ1 ≥ · · · ≥ λ2m are eigenvalues of B′
m. Let C be a principal submatrix of B

of size h. Without loss of generality, assume that C is induced by the first h rows and 
columns of Bm. Therefore, we have PBmPT = C, where P = (Ih | 0)h×2m and Ih is the 
unit matrix. Note that
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C ′ = PB′
mPT = P (DBmD−1)PT = (PDPT )PBmPT (PD−1PT )

= (PDPT )C(PD−1PT ).

Since (PD−1PT ) = (PDPT )−1, we see that C ′ is similar to C and so μ1 ≥ · · · ≥ μh are 
eigenvalues of C ′. Note that C ′ is a principal submatrix of B′

m. By Lemma 2.2, we have 
λ2m−h+i ≤ μi ≤ λi for 1 ≤ i ≤ h. �
Remark 1. Since adding λI to B shifts the eigenvalues by λ, Lemma 3.3 also implies 
that the interlacing theorem holds for Bm + λI for any number λ.

Lemma 3.4. The determinant of Bm + 2I is (−1)m−1s1 · · · smt1 · · · tm−1(tm + 2).

Proof. Denote by rowi(A) and colj(A) the i-th row and the j-th column of a matrix A, 
respectively. By (1), Bm + 2I is given by

Bm + 2I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2s1 t1 2s2 t2 · · · 2sm tm
s1 t1 + 1 2s2 t2 · · · 2sm tm
2s1 2t1 2s2 t2 · · · 2sm tm
s1 t1 s2 t2 + 1 · · · 2sm tm
...

...
...

...
...

...
2s1 2t1 2s2 2t2 · · · 2sm tm
s1 t1 s2 t2 · · · sm tm + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We make some operations on Bm + 2I.
In the first step, for 1 ≤ i ≤ m − 1 we replace row2i−1 and row2i, respectively, with 

row2i−1(Bm + 2I) − row2i+1(Bm + 2I) and row2i(Bm + 2I) − row2i+2(Bm + 2I). Since 
each subtraction involves rows that differ in at most three places we have:

(Bm + 2I)(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t1 0 0 · · · 0 0
0 1 s2 −1 · · · 0 0
0 0 0 −t2 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...
2s1 2t1 2s2 2t2 · · · 2sm tm
s1 t1 s2 t2 · · · sm tm + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the second step, we replace row2m−1 with row2m−1((Bm + 2I)(1)) − 2 · row2m((Bm +
2I)(1)) obtaining:
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(Bm + 2I)(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t1 0 0 · · · 0 0
0 1 s2 −1 · · · 0 0
0 0 0 −t2 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 −(tm + 2)
s1 t1 s2 t2 · · · sm tm + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the third step, we use the first column to eliminate the entries different from s1 in the 
last row. We then use row operations to eliminate the 1’s and −1’s with −ti, obtaining:

(Bm + 2I)(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t1 0 0 · · · 0 0
0 0 s2 0 · · · 0 0
0 0 0 −t2 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 −(tm + 2)
s1 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that these operations do not change the determinant of Bm + 2I. We compute 
det((Bm + 2I)(3)) always expanding along the top row, noting all nonzero terms get 
multiplied by −1:

det(Bm + 2I) = det((Bm + 2I)(3))

= (−1)m−1t1s2t2s3 · · · sm det
[

0 −(tm + 2)
s1 0

]
= (−1)m−1s1 · · · smt1 · · · tm−1(tm + 2).

This completes the proof. �
From Lemmas 3.3 and 3.4, we have the following result.

Lemma 3.5. There are exactly m − 1 eigenvalues of Bm less than −2.

Proof. We prove this result by induction on m. If m = 1 then the characteristic polyno-
mial of B1+2I is λ2−(2s1+t1+1)λ +s1t1+2s1. Therefore, we have λ1λ2 = s1(t1+2) > 0, 
where λ1 ≥ λ2 are the eigenvalues of B1 + 2I. Note the eigenvalues of B1 and therefore 
B1 +2I are real because of Corollary 2.1. It is clear that λ1 > 0 and so λ2 > 0. It means 
that there is no eigenvalue of B1 less than −2 and the result holds. Assume that the re-
sult holds for m = k with k ≥ 1. Suppose that μ1 ≥ · · · ≥ μk ≥ μk+1 ≥ μk+2 ≥ · · · ≥ μ2k
are the eigenvalues of Bk +2I. By assumption, we have μk+1 > 0 and μk+2 < 0. Suppose 
that λ1 ≥ · · · ≥ λk+1 ≥ λk+2 ≥ λk+3 ≥ · · · ≥ λ2k+2 are eigenvalues of Bk+1 + 2I. Since 
Bk + 2I is a principal submatrix of Bk+1 + 2I, Lemma 3.2 and Remark 1 imply that
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λ1 ≥ λk+1 ≥ μk+1 > 0 and 0 > μk+2 ≥ λk+4 ≥ λ2k+2.

From Lemma 3.4, we have
{

(−1)k−1s1 · · · skt1 · · · tk−1(tk + 2) = det(Bk + 2I) = (μ1 · · ·μk+1)(μk+2 · · ·μ2k)
(−1)ks1 · · · sk+1t1 · · · tk(tk+1 + 2) = det(Bk+1 + 2I) = (λ1 · · ·λk+1)(λk+2λk+3)(λk+4 · · ·λ2k+2)

.

It implies that λk+2λk+3 < 0, and so λk+2 > 0 and λk+3 < 0. Thus, Bk+1 has exactly k
eigenvalues less than −2, which are λk+3−2, . . . , λ2k+2−2. This completes the proof. �

Combining Corollaries 3.1, 3.2, 3.3 and Lemma 3.5, we obtain our main result.

Theorem 3.1. Let Γ be a threshold graph with representation sequence (0s1 , 1t1 , . . . , 0sm ,

1tm) and s = s1 + · · · + sm, t = t1 + · · · + tm.
(i) If s1 = 1, then SpecD(Γ) = {λ1, . . . , λm, [−1]t−m+1, [−2]s−m, λm+2, . . . , λ2m}, 

where λ1 > · · · > λm > −1 > −2 > λm+2 > · · · > λ2m.
(ii) If s1 ≥ 2, then SpecD(Γ) = {λ1, . . . , λm+1, [−1]t−m, [−2]s−m, λm+2, . . . , λ2m}, 

where λ1 > · · · > λm+1 > −1 > −2 > λm+2 > · · · > λ2m.

Proof. Let Bm be the quotient matrix of Γ given in (1). By Corollary 3.2 and Lemma 3.5, 
all eigenvalues of Bm are distinct and there are exactly m − 1 of them less than −2. 
Therefore, we assume that λ1 > · · · > λm > λm+1 > λm+2 > · · · > λ2m are the 
eigenvalues of Bm, where λm+2 < −2. By Corollary 3.3, we have λm+1 ≥ −1. Moreover, 
by Corollary 3.1, we have that λm+1 = −1 if s1 = 1 and λm+1 > −1 if s1 ≥ 2. On the 
one hand, by Corollary 2.1, the 2m eigenvalues of Bm are all eigenvalues of D(Γ). On 
the other hand, by Lemma 3.1, −2 and −1 are eigenvalues of D(Γ) with multiplicities at 
least s −m and t −m, respectively. Note that 2m + (s −m) + (t −m) = s + t, which is 
exactly the order of Γ. We get all the distance eigenvalues of Γ. �
Remark 2. In 2013, Jacobs et al. [13] also stated that all distance eigenvalues other than 
−1 and −2 are simple. They gave this result according to an algorithm without algebraic 
proof. Recently, the formula for the multiplicity of −2 was also reported in [20] without 
proof.

In 1974, Harary and Schwenk [7] proposed an interesting problem: “Which graphs have 
distinct eigenvalues?” There are only a few results about this problem. Recently, Lou et 
al. [17] constructed an infinite family of graphs having distinct eigenvalues. With respect 
to distance eigenvalues, we find all threshold graphs with distinct distance eigenvalues 
by Theorem 3.1.

Theorem 3.2. Let Γ be a threshold graph with representation sequence (0s1 , 1t1 , . . . , 0sm ,

1tm) and s = s1 + · · · + sm, t = t1 + · · · + tm. Then all distance eigenvalues of Γ are 
distinct if and only if one of the followings holds.
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Table 1
The threshold graphs with distinct distance eigenvalues on n vertices.

The oder n (s1, t1, . . . , sm, tm) Distance spectrum

5 (2, 1, 1, 1) {5.76,−0.56,−0.77,−2,−2.43}
5 (1, 1, 2, 1) {6.18,−0.64,−1,−2,−2.54}
6 (1, 1, 1, 1, 1, 1) {7.21,−0.51,−0.76,−1,−2.27,−2.66}
6 (2, 2, 1, 1) {6.86,−0.45,−0.73,−1,−2,−2.69}
6 (2, 1, 1, 2) {6.51,−0.35,−0.72,−1,−2,−2.44}
7 (2, 1, 1, 1, 1, 1) {8.83,−0.34,−0.69,−0.78,−2,−2.28,−2.75}
7 (1, 1, 2, 1, 1, 1) {9.14,−0.32,−0.75,−1,−2,−2.37,−2.70}
7 (1, 1, 1, 1, 2, 1) {9.41,−0.51,−0.68,−1,−2,−2.29,−2.92}
8 (1, 1, 1, 1, 1, 1, 1, 1) {10.31,−0.27,−0.68,−0.78,−1,−2.24,−2.37,−2.98}
8 (2, 2, 1, 1, 1, 1) {10.06,−0.31,−0.59,−0.76,−1,−2,−2.31,−3.08}
8 (2, 1, 1, 2, 1, 1) {9.80,−0.12,−0.69,−0.74,−1,−2,−2.37,−2.88}
8 (2, 1, 1, 1, 1, 2) {9.55,−0.15,−0.60,−0.76,−1,−2,−2.28,−2.77}
9 (2, 1, 1, 1, 1, 1, 1, 1) {11.92,−0.09,−0.59,−0.73,−0.78,−2,−2.24,−2.40,−3.09}
9 (1, 1, 2, 1, 1, 1, 1, 1) {12.16,−0.02,−0.64,−0.77,−1,−2,−2.27,−2.48,−2.98}
9 (1, 1, 1, 1, 2, 1, 1, 1) {12.38,−0.18,−0.62,−0.75,−1,−2,−2.28,−2.42,−3.12}
9 (1, 1, 1, 1, 1, 1, 2, 1) {12.58,−0.25,−0.64,−0.74,−1,−2,−2.25,−2.43,−3.28}

(i) si = ti = 1 for i = 1, 2, ..., m;
(ii) s1 = 2, si = 1 for i = 2, 3, ..., m, and tj = 1 for j = 1, 2, ..., m;
(iii) s1 = 2, si = 1 for 2 ≤ i ≤ m and t = m + 1;
(iv) s1 = 1, s = m + 1 and tj = 1 for 1 ≤ j ≤ m.

Proof. The sufficiency is immediate By Theorem 3.1. Now we assume that Γ has distinct 
distance eigenvalues.

Suppose that −2 /∈ SpecD(Γ). By Theorem 3.1, we have s − m = 0. It means that 
si = 1 for 1 ≤ i ≤ m. Therefore, −1 ∈ SpecD(Γ) has multiplicity t −m + 1. It leads to 
t −m = 0, and so tj = 1 for 1 ≤ j ≤ m, (i) holds.

Suppose that −2 ∈ SpecD(Γ). Therefore, s − m = 1. It means that exactly one of 
{s1, . . . , sm} is 2 and the others are all 1. We first consider the case of s1 = 2. In this 
case, if −1 /∈ SpecD(Γ), then t − m = 0, and so tj = 1 for 1 ≤ j ≤ m, (ii) holds; if 
−1 ∈ SpecD(Γ), then t −m = 1, and so (iii) holds. Next, we consider the case of s1 = 1. 
Thus, −1 ∈ SpecD(Γ) has multiplicity t −m +1. It implies that t −m = 0, and so tj = 1
for 1 ≤ j ≤ m, (iv) holds. �
Remark 3. From Theorem 3.2, for a given integer n, there are exactly n−1

2 connected 
threshold graphs with distinct distance eigenvalues for odd n and there are exactly n

2
ones for even n. In fact, if n is even, then only (i) and (iii) can be happen. If (i) happen, 
then n = 2m, which leads to only one graph with representation (0, 1, . . . , 0, 1). If (iii) 
holds, then n = 2m + 2 and so m = n

2 − 1. It leads to m graphs by setting ti = 2 for 
1 ≤ i ≤ m. Thus, there are n2 threshold graphs with distinct distance eigenvalues. The 
case of odd n is similar. We present such graphs in Table 1 for n = 5, 6, 7, 8, 9.
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Table 2
The distance spectrum and distance energy of threshold graphs on 8 vertices.

(s1, t1, . . . , sm, tm) Distance spectrum Distance energy

(4, 4) {8.77, 0.23, [−1]3, [−2]3} 18
(2, 2, 2, 2) {9.82,−0.26, [−1]2, [−2]3,−3.05} 19.64
(2, 1, 2, 3) {9.30, 0,−0.65, [−1]2, [−2]2,−2.65} 18.60
(2, 1, 3, 2) {10.62,−0.22,−0.63,−1, [−2]3,−2.78} 21.25
(2, 2, 1, 3) {8.44,−0.15,−0.56, [−1]3,−2,−2.72} 16.88
(2, 2, 3, 1) {11.31,−0.45,−0.61,−1, [−2]3,−3.25} 22.61
(2, 3, 1, 2) {8.73,−0.29,−0.54, [−1]3,−2,−2.90} 17.46
(2, 3, 2, 1) {10.32,−0.37,−0.64, [−1]2, [−2]2,−3.31} 20.64
(1, 2, 2, 3) {9.02,−0.08, [−1]4,−2,−2.94} 18.04
(1, 2, 3, 2) {10.36,−0.25, [−1]3, [−2]2,−3.11} 20.71
(1, 3, 2, 2) {9.56,−0.32, [−1]4,−2,−3.24} 19.12
(3, 1, 2, 2) {10.36,−0.13,−0.52,−1, [−2]3,−2.70} 20.73
(3, 2, 1, 2) {9.29, 0,−0.55, [−1]2, [−2]2,−2.73} 18.57
(3, 2, 2, 1) {10.82,−0.09,−0.64,−1, [−2]3,−3.08} 21.64
(1, 1, 3, 3) {9.59, 0.04, [−1]3, [−2]2,−2.63} 19.27
(1, 3, 1, 3) {8.17,−0.30, [−1]5,−2.87} 16.33
(1, 3, 3, 1) {11.07,−0.60, [−1]3, [−2]2,−3.47} 22.14
(3, 1, 3, 1) {11.81,−0.34,−0.62, [−2]4,−2.85} 23.61
(3, 1, 1, 3) {9.03, 0.07,−0.62, [−1]2, [−2]2,−2.48} 18.20
(3, 3, 1, 1) {9.55,−0.05,−0.71, [−1]2, [−2]2,−2.89} 19.20
(1, 1, 3, 1, 1, 1) {11.10,−0.20,−0.75,−1, [−2]2,−2.42,−2.73} 22.19
(1, 1, 1, 3, 1, 1) {9.28,−0.24,−0.71, [−1]3,−2.37,−2.96} 18.56
(1, 1, 1, 1, 1, 3) {8.73,−0.08,−0.69, [−1]3,−2.27,−2.69} 17.45
(1, 1, 1, 1, 3, 1) {11.55,−0.51,−0.64,−1, [−2]2,−2.30,−3.10} 23.10
(1, 3, 1, 1, 1, 1) {9.81,−0.48,−0.76, [−1]3,−2.32,−3.25} 19.62
(3, 1, 1, 1, 1, 1) {10.58,−0.09,−0.64,−0.77, [−2]2,−2.28,−2.80} 21.16
(1, 1, 1, 2, 1, 2) {9.00,−0.23,−0.58, [−1]3,−2.34,−2.85} 18.00
(1, 1, 1, 2, 2, 1) {10.56,−0.35,−0.65, [−1]2,−2,−2.35,−3.22} 21.13
(1, 1, 2, 1, 1, 2) {9.83,−0.10,−0.65, [−1]2,−2,−2.37,−2.71} 19.66
(1, 1, 2, 1, 2, 1) {11.31,−0.30,−0.66,−1, [−2]2,−2.43,−2.92} 22.63
(1, 2, 1, 2, 1, 1) {9.54,−0.31,−0.72, [−1]3,−2.46,−3.05} 19.08
(1, 2, 2, 1, 1, 1) {10.58,−0.30,−0.75, [−1]2,−2,−2.40,−3.12} 21.15
(1, 2, 1, 1, 1, 2) {9.28,−0.27,−0.70, [−1]3,−2.31,−3.00} 18.56
(1, 2, 1, 1, 2, 1) {10.81,−0.49,−0.68, [−1]2,−2,−2.37,−3.28} 21.63
(2, 1, 2, 1, 1, 1) {10.38,−0.22,−0.65,−0.75, [−2]2,−2.38,−2.83} 21.66
(2, 1, 1, 2, 1, 1) {9.80,−0.12,−0.69,−0.74,−1,−2,−2.37,−2.88} 19.60
(2, 1, 1, 1, 1, 2) {9.55,−0.15,−0.65,−0.76,−1,−2,−2.28,−2.77} 19.10
(2, 1, 1, 1, 2, 1) {11.06,−0.32,−0.64,−0.74, [−2]2,−2.31,−3.04} 22.12
(2, 2, 1, 1, 1, 1) {10.06,−0.31,−0.59,−0.76,−1,−2,−2.31,−3.08} 20.11
(1, 1, 1, 1, 2, 2) {10.08,−0.23,−0.62, [−1]2,−2,−2.29,−2.93} 20.17
(1, 1, 2, 2, 1, 1) {10.07,−0.04,−0.72, [−1]2,−2,−2.48,−2.83} 20.13
(1, 1, 1, 1, 1, 1, 1, 1) {10.31,−0.27,−0.68,−0.78,−1,−2.24,−2.37,−2.98} 20.63

For a square matrix M the triple (n−(M), n0(M), n+(M)) is called the inertia M , 
where n−(M) and n+(M) denote the number of negative and positive eigenvalues, re-
spectively, whereas, n0(M) is the nullity of M . By Theorem 3.1, we get the inertia of 
D(Γ) + 2I.
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Corollary 3.4. Let Γ be a threshold graph with representation sequence (0s1, 1t1 , . . . , 0sm ,

1tm) and s = s1 + · · · + sm, t = t1 + · · · + tm. If D(Γ) is the distance matrix of Γ, then 
the inertia of D(Γ) + 2I is (m − 1, s −m, t + 1).

A graph Γ is said to be determined by its distance spectrum if there is no graph 
Γ′ � Γ sharing the same distance spectrum with Γ. Note that the threshold graph Γ with 
representation sequence (0s1 , 1t1) is a complete multipartite graph, i.e., Γ ∼= Ks1,1,...,1. 
In 2014, Jin and Zhang [11] proved that complete multipartite graphs are determined by 
their distance spectra. However, there is no result about whether threshold graphs are 
determined by their distance spectra. Thus, we propose the following result.

Problem 1. Whether threshold graphs are determined by their distance spectra? Or more 
special, whether two different threshold graphs can share the same distance spectrum?

The distance energy of a graph Γ is the sum of the absolute values of its distance 
eigenvalues. This concept was introduced by Indulal, Gutman and Vijayakumar [10] and 
obtains widely attentions [9,16,22]. Thus, we are interested in the distance energy of 
threshold graphs.

Problem 2. Among all threshold graphs of order n, which ones have the largest 
distance energy? Note that a threshold graph has a representation sequence, say 
(0s1 , 1t1 , . . . , 0sm , 1tm), where si, ti ≥ 1 for 1 ≤ i ≤ m and s1+· · ·+sm+t1+· · ·+tm = n. 
For given n and m, which threshold graph has the largest distance energy?

We end up our paper by calculating the distance spectra and distance energies of all 
threshold graphs on 8 vertices in Table 2, which may be helpful for solving the problems 
above.
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