
Discrete Mathematics 341 (2018) 723–731

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A sharp lower bound on Steiner Wiener index for trees with
given diameter
Lu Lu, Qiongxiang Huang *, Jiangxia Hou, Xun Chen
College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, PR China

a r t i c l e i n f o

Article history:
Received 8 June 2017
Received in revised form 22 October 2017
Accepted 13 November 2017
Available online 22 December 2017

Keywords:
Distance
Steiner distance
Steiner Wiener index
Caterpillar trees

a b s t r a c t

Let G be a connected graph with vertex set V (G) and edge set E(G). For a subset S of V (G),
the Steiner distance d(S) of S is the minimum size of a connected subgraph whose vertex
set contains S. For an integer k with 2 ≤ k ≤ n − 1, the Steiner k-Wiener index SWk(G) is∑

S⊆V (G),|S|=kd(S). In this paper, we introduce some transformations for trees that do not
increase their Steiner k-Wiener index for 2 ≤ k ≤ n − 1. Using these transformations,
we get a sharp lower bound on Steiner k-Wiener index for trees with given diameter, and
obtain the corresponding extremal graph as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper all graphs are connected and simple, and all notations and terminologies not described here are
standard in [1]. For a graph G and two vertices u, v ∈ V (G), the distance between u and v, denoted by dG(u, v), is the length
of a shortest path connecting u and v. The diameter d(G) of G is the largest distance between any two vertices. The Wiener
index W (G) of a graph G is the sum of distances between each pair of vertices, that is,

W (G) =

∑
{u,v}⊆V (G)

dG(u, v).

TheWiener index is an important distance-based graph invariant. It was proposed by HaroldWiener [11] in 1947. He found
that there exist correlations between the boiling points of paraffins and their molecular structure. The study of the Wiener
index in mathematics dates back to the 1970s [4]. Since then, the Wiener index obtained wide attention and many splendid
results have been obtained, see the surveys [3,6,7,12].

Let G be a graph with vertex set V and edge set E. For a subset S of V , the Steiner distance dG(S) of S is the minimum size
of a connected subgraph whose vertex set contains S, that is,

dG(S) = min{|E(H)| : H is a connected subgraph of Gwith S ⊆ V (H)}.

This concept was proposed by Chartrand et al. [2] in 1989. Note that the size of the spanning tree of H is not greater than
|E(H)|. Therefore, the Steiner distance can be written as

dG(S) = min{|E(T )| : T is a subtree of Gwith S ⊆ V (T )}.

Taking S = {u, v}, we see that dG(S) = dG(u, v). Thus the concept of Steiner distance is a natural generalization of the concept
of classical distance.
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With respect to the concept of Steiner distance, Li et al. [8] generalized the concept of Wiener index by Steiner Wiener
index. For an integer k with 2 ≤ k ≤ n − 1, the Steiner k-Wiener index SWk(G) of G is the sum of Steiner k-distances of all
subsets S of V with |S| = k, that is,

SWk(G) =

∑
S⊆V ,|S|=k

dG(S).

The classical Wiener index is just the special case of Steiner k-Wiener index for k = 2. The application of Steiner Wiener
index was introduced in [5]. Recently, Mao et al. [10] established expressions for the Steiner k-Wiener index on the join,
corona, cluster, lexicographical product, and Cartesian product of graphs.

In 1976, Entringer et al. [4] obtained the lower and upper bounds on Wiener index for trees, that is,

(n − 1)2 ≤ W (T ) ≤

(
n + 1
3

)
and the star Sn minimizes the Wiener index and the path Pn maximizes the Wiener index. Recently, Li et al. [8] generalized
this result to the Steiner Wiener index, that is,(

n − 1
k − 1

)
(n − 1) ≤ SWk(T ) ≤ (k − 1)

(
n + 1
k + 1

)
for 2 ≤ k ≤ n − 1, and the star Sn and the path Pn attain the lower and upper bounds, respectively. In 2008, Liu et al. [9]
characterized the treewith smallestWiener index among all treeswith givendiameter. Naturally,wewould like to generalize
this result to the Steiner Wiener index. In Section 2, we introduce some transformations for a tree which do not increase its
Steiner Wiener index. In Section 3, we give a sharp lower bound on the Steiner Wiener index for trees with given diameter,
and obtain the corresponding extremal graph as well.

2. Transformations for trees

Let G be a connected graph with vertex set V (G) and edge set E(G). For v ∈ V (G), denote by d(v) and N(v) the degree and
the neighbourhood of v, respectively. As usual, we write Pn, Cn and Ka,b for the path, the cycle and the complete bipartite
graphs, respectively. For two integers n and d with 2 ≤ d ≤ n − 1, let T (n) be the family of trees on n vertices and
T (n, d) = {T ∈ T (n) : d(T ) = d}. Clearly, T (2) = {P2}, T (3) = {P3}, T (n, 2) = {K1,n−1} and T (n, n − 1) = {Pn}. Each
of them contains only one graph whose Steiner Wiener index is clear. Therefore, we only consider T (n, d) with n ≥ 4 and
3 ≤ d ≤ n − 2. In this part, we will introduce some transformations for a tree, which do not increase its Steiner Wiener
index.

We start with a useful combinatorial inequality.

Lemma 2.1. Let a, b and k be three positive integers such that a ≤ b. If 2 ≤ k ≤ b + 1, then
(a
k

)
+

(b
k

)
<

(a−1
k

)
+

(b+1
k

)
; if

k ≥ b + 2, then
(a
k

)
+

(b
k

)
=

(a−1
k

)
+

(b+1
k

)
.

Proof. Note that
(n−1
m−1

)
+

(n−1
m

)
=

(n
m

)
for two positive integersm and n. It follows that[(

a − 1
k

)
+

(
b + 1
k

)]
−

[(
a
k

)
+

(
b
k

)]
=

[(
b + 1
k

)
−

(
b
k

)]
−

[(
a
k

)
−

(
a − 1
k

)]
=

(
b

k − 1

)
−

(
a − 1
k − 1

)
.

If 2 ≤ k ≤ b + 1 then
( b
k−1

)
−

(a−1
k−1

)
> 0; if k ≥ b + 2 then

( b
k−1

)
−

(a−1
k−1

)
= 0 − 0 = 0. This completes the proof. □

Let T ∈ T (n) and e ∈ E(T ) such that e = v1v2. We say that v1 and v2 are the left end and the right end of e, respectively.
Denote by

N (T )
l (e) = {v ∈ V (T ) : d(v, v1) < d(v, v2)},N (T )

r (e) = {v ∈ V (T ) : d(v, v1) > d(v, v2)}

and n(T )
l (e) = |N (T )

l (e)|, n(T )
r (e) = |N (T )

r (e)|. In other words, N (T )
l (e) and N (T )

r (e) are the vertex sets of the components of
G − e containing v1 and v2, respectively. By the definitions, V (T ) = N (T )

l (e) ∪ N (T )
r (e) and n = n(T )

l (e) + n(T )
r (e). Denote by

γ (T )(e) = min{n(T )
l (e), n(T )

r (e)} and η(T )(e) = max{n(T )
l (e), n(T )

r (e)}. Obviously, n(T )
l (v1v2) and n(T )

r (v1v2) depend on the order of
v1 and v2, but γ (T )(v1v2) and η(T )(v1v2) do not. When the tree T is clear from the context, we delete T from the notations like
N (T )
l (e), n(T )

l (e) and γ (T )(e). Li et al. give a useful formula to calculate the Steiner Wiener index of a tree.

Lemma 2.2 (Theorem 4.3 of [8]). Let k be an integer such that 2 ≤ k ≤ n. If T is a tree, then for its Steiner k-Wiener index holds

SW k(T ) =

∑
e∈E(T )

k−1∑
i=1

(
nl(e)
i

)(
nr (e)
k − i

)
.

Note that SWn(T ) = n − 1 for all trees on n vertices. We only consider SWk(T ) for 2 ≤ k ≤ n − 1. Since {γ (e), η(e)} =

{nl(e), nr (e)}, the formula given in Lemma 2.2 can be simplified as follows.
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Lemma 2.3. Let k be an integer such that 2 ≤ k ≤ n − 1. If T is a tree, then for its Steiner k-Wiener index holds

SW k(T ) = (n − 1)
(
n
k

)
−

∑
e∈E(T )

[(
γ (e)
k

)
+

(
η(e)
k

)]
.

Proof. Note the combinatorial identity
∑k

i=0

(a
i

)( b
k−i

)
=

(a+b
k

)
. Since {γ (e), η(e)} = {nl(e), nr (e)} and γ (e) + η(e) =

nl(e) + nr (e) = n for e ∈ E(T ), Lemma 2.2 implies that

SWk(T ) =

∑
e∈E(T )

k−1∑
i=1

(
nl(e)
i

)(
nr (e)
k − i

)
=

∑
e∈E(T )

k−1∑
i=1

(
γ (e)
i

)(
η(e)
k − i

)

=

∑
e∈E(T )

[
k∑

i=0

(
γ (e)
i

)(
η(e)
k − i

)
−

(
γ (e)
0

)(
η(e)
k

)
−

(
γ (e)
k

)(
η(e)
0

)]

=

∑
e∈E(T )

[(
n
k

)
−

[(
γ (e)
k

)
+

(
η(e)
k

)]]
=(n − 1)

(
n
k

)
−

∑
e∈E(T )

[(
γ (e)
k

)
+

(
η(e)
k

)]
.

It follows our result. □

Let T and T ′ be two trees in T (n). For ϵ ∈ E(T ) and a positive integer s, a feasible map from T to T ′ with respect to ϵ and s
is a bijection φ: E(T ) → E(T ′) such that:
(i) γ (T )(ϵ) − s = γ (T ′)(φ(ϵ)),
(ii) γ (T )(e) = γ (T ′)(φ(e)) for e ∈ E(T ) \ {ϵ}.

Denote by Fϵ,s(T , T ′) the set of all feasible maps from T to T ′ with respect to ϵ and s. Now we give a criterion to compare
the Steiner Wiener indices of two trees.

Theorem 2.1. Let T and T ′ be two trees in T (n). If there exist ϵ ∈ E(T ) and a positive integer s such that Fϵ,s(T , T ′) ̸= ∅, then
SW k(T ) > SW k(T ′) for 2 ≤ k ≤ η(T )(ϵ) + s and SW k(T ) = SW k(T ′) for η(T )(ϵ) + s < k ≤ n − 1.

Proof. Assume φ ∈ Fϵ,s(T , T ′). We consider SWk(T ) − SWk(T ′) for 2 ≤ k ≤ n − 1. By Lemma 2.3, we have

SWk(T ) − SWk(T ′) =

⎡⎣(n − 1)
(
n
k

)
−

∑
e∈E(T )

[(
γ (T )(e)

k

)
+

(
η(T )(e)

k

)]⎤⎦
−

⎡⎣(n − 1)
(
n
k

)
−

∑
e∈E(T ′)

[(
γ (T ′)(e)

k

)
+

(
η(T ′)(e)

k

)]⎤⎦
=

∑
e∈E(T ′)

[(
γ (T ′)(e)

k

)
+

(
η(T ′)(e)

k

)]
−

∑
e∈E(T )

[(
γ (T )(e)

k

)
+

(
η(T )(e)

k

)]

=

∑
e∈E(T )

[(
γ (T ′)(φ(e))

k

)
+

(
η(T ′)(φ(e))

k

)]
−

∑
e∈E(T )

[(
γ (T )(e)

k

)
+

(
η(T )(e)

k

)]

=

[(
γ (T ′)(φ(ϵ))

k

)
+

(
η(T ′)(φ(ϵ))

k

)]
−

[(
γ (T )(ϵ)

k

)
+

(
η(T )(ϵ)

k

)]
.

By Lemma 2.1, we have[(
γ (T )(ϵ)

k

)
+

(
η(T )(ϵ)

k

)]
≤

[(
γ (T )(ϵ) − 1

k

)
+

(
η(T )(ϵ) + 1

k

)]
≤ · · ·

≤

[(
γ (T )(ϵ) − (s − 1)

k

)
+

(
η(T )(ϵ) + (s − 1)

k

)]
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Fig. 1. The star-root transformation of T on u.

≤

[(
γ (T )(ϵ) − s

k

)
+

(
η(T )(ϵ) + s

k

)]
=

[(
γ (T ′)(φ(ϵ))

k

)
+

(
η(T ′)(φ(ϵ))

k

)]
.

Rather, if k ≤ η(T )(ϵ) + s then the last inequality above must be strict; if k > η(T )(ϵ) + s then all above inequalities become
equalities. Thus we have{

SWk(T ) − SWk(T ′) > 0 if k ≤ η(T )(ϵ) + s ,

SWk(T ) − SWk(T ′) = 0 if k > η(T )(ϵ) + s.

It follows our result. □

By Theorem 2.1 wewill give some transformations for a tree, which do not increase its SteinerWiener index. In fact, they
are all special cases of Theorem 2.1 for some specific ϵ and s.

For a tree T ∈ T (n), a vertex u ∈ V (T ) is a star-root if N(u) = {v, u1, . . . , us} such that d(v) > 1 and d(ui) = 1 for
1 ≤ i ≤ s and s ≥ 1. Clearly, each tree T ∈ T (n) has at least two star-roots unless T = K1,n−1. Let T be a tree in T (n) and u a
star root in V (T ) with N(u) = {v, u1, . . . , us} such that d(v) > 1. We construct the new tree Tu from T by deleting the edges
uui and adding the edges vui (see Fig. 1). The star-root switching of T on u is the transformation from T to Tu, and Tu is the
corresponding star-root switching graph. By simple observations, Tu contains one more pendant vertex than T .

Corollary 2.1. Let T be a tree in T (n). If u is a star-root of T , then SW k(T ) > SW k(Tu) for 2 ≤ k ≤ n − 1.

Proof. Assume that N(u) = {v, u1, . . . , us}, where d(v) > 1. We define the bijection f : E(T ) → E(Tu) by f (uui) = vui for
1 ≤ i ≤ s and f (xy) = xy for xy ∈ E(T ) \ {uu1, . . . , uus}. Denote by ϵ = uv. It is easy to see that⎧⎪⎨⎪⎩

n(T )
l (ϵ) = s + 1, n(T )

r (ϵ) = n − (s + 1)

γ (T )(e) = γ (Tu)(f (e)), for e ∈ E(T ) \ {ϵ}

γ (Tu)(f (ϵ)) = 1, η(Tu)(f (ϵ)) = n − 1.

If s+ 1 ≤
n
2 , then γ (T )(ϵ) = n(T )

l (ϵ) = s+ 1 and η(T )(ϵ) = n(T )
r (ϵ) = n− (s+ 1). It means that γ (Tu)(f (ϵ)) = 1 = γ (T )(ϵ)− s.

Thus f ∈ Fϵ,s(T , Tu). By Theorem 2.1, we have SWk(T ) > SWk(Tu) for 2 ≤ k ≤ η(T )(ϵ) + s. Note that η(T )(ϵ) + s = n − 1. The
result follows.

If s + 1 > n
2 , then γ (T )(ϵ) = n − (s + 1) and η(T )(ϵ) = n − (n − (s + 1)) = s + 1. It means that γ (Tu)(f (ϵ)) = 1 =

γ (T )(ϵ) − (n − s − 2). Note that s ≤ n − 3. We have n − s − 2 ≥ 1, and thus f ∈ Fϵ,n−s−2. By Theorem 2.1, we have
SWk(T ) > SWk(Tu) for 2 ≤ k ≤ η(T )(ϵ) + (n − s − 2). Note that η(T )(ϵ) + (n − s − 2) = n − 1. The result follows. □

Let T ∈ T (n) and u ∈ V (T ). Denote by P(u) = {v ∈ N(u) : d(v) = 1} and P(u)∗ = {v ∈ N(u) : d(u) > 1}. We say that u
is a pseudo star-root if |P(u)| ≥ 1 and |P(u)∗| ≥ 1. Particularly, a star-root x is a pseudo star-root with |P(x)∗| = 1. Suppose
that v1 is a pseudo star-root of T . For v2 ∈ P(v1)∗ and U = {u1, . . . , us} ⊆ P(v1), we construct the new tree T (U)

v1→v2
from T by

deleting the edges v1ui and adding the edges v2ui for 1 ≤ i ≤ s (see Fig. 2). The pseudo star-root switching of T from v1 to v2

with respect to U is the transformation from T to T (U)
v1→v2

, and T (U)
v1→v2

is the corresponding pseudo star-root switching graph.
The pseudo star-root switching is complete if U = P(v1). For convenience, denote by Tv1→v2 = T (P(v1))

v1→v2 .

Corollary 2.2. Let T be a tree in T (n) and v1 a pseudo star-root of T . Let U be a nonempty subset of P(v1) and v2 ∈ P(v1)∗.
If n(T )

l (v1v2) ≤ n(T )
r (v1v2), then SW k(T ) > SW k(T (U)

v1→v2
) for 2 ≤ k ≤ η(T )(v1v2) + |U | and SW k(T ) = SW k(T (U)

v1→v2
) for

η(T )(v1v2) + |U | < k ≤ n − 1.

Proof. Define the bijection f : E(T ) → E(T (U)
v1→v2

) by f (v1u) = v2u for u ∈ U and f (xy) = xy for xy ∈ E(T ) \ {v1u : u ∈ U}.

Denote by ϵ = v1v2. Obviously, γ (T )(e) = γ (T (U)
v1→v2 )(f (e)) for e ∈ E(T ) \ {ϵ}. Since n(T )

l (v1v2) ≤ n(T )
r (v1v2), we have
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Fig. 2. The pseudo star-root switching from v1 to v2 with respect to U .

Fig. 3. The caterpillar graphs.

γ (T )(ϵ) = n(T )
l (ϵ) and γ (T (U)

v1→v2 )(f (ϵ)) = n(T )
l (ϵ) − |U | = γ (T )(ϵ) − |U |. Thus f ∈ Fϵ,|U |, and so the result follows from

Theorem 2.1. □

The caterpillar treewith respect to Pd = u0u1 · · · ud, denoted by CP(s1, . . . , sd−1), is the tree obtained from Pd by attaching
si new vertices to ui for 1 ≤ i ≤ d − 1 (see Fig. 3). Especially, the path Pd itself can be regarded as the caterpillar tree
CP(0, 0, . . . , 0  

d−1

) and the star K1,n−1 can be regarded as the caterpillar tree CP(n−3). Obviously, CP(s1, s2, . . . , sd−1) ∈ T (n, d),

where n =
∑d−1

i=1 si + d + 1. Particularly, if si = 0 for i ̸= t and st = s ̸= 0, then such a caterpillar tree is denoted by CPd,t (s)
(see Fig. 3), that is,

CPd,t (s) = CP(0, . . . , 0  
t−1

, s, 0, . . . , 0  
d−1−t

).

Note that CPd,t (s) ∼= CPd,d−t (s). We always assume that t ≤
d
2 in the notation CPd,t (s).

Corollary 2.3. Let CPd,t (s) be a caterpillar tree with respect to Pd = u0u1 · · · ud such that s ≥ 1. If t ≤
d
2 − 1, then

SW k(CPd,t (s)) > SW k(CPd,t+1(s)) for 2 ≤ k ≤ d − t + s and SW k(CPd,t (s)) = SW k(CPd,t+1(s)) for d − t + s < k ≤ n − 1.

Proof. Denote by T = CPd,t (s) and T ′
= CPd,t+1(s) (see Fig. 4). Define the bijection f : E(T ) → E(T ′) by f (utu) = ut+1u for

u ∈ P(ut ) and f (xy) = xy for xy ∈ E(T )\{utu : u ∈ P(ut )}. Denote by ϵ = utut+1. Obviously, n
(T )
l (ϵ) = s+ t+1, n(T )

r (ϵ) = d− t
and γ (T )(e) = γ (T ′)(f (e)) for e ̸= ϵ.

If s+t+1 ≤ d−t , then γ (T )(ϵ) = n(T )
l (ϵ) = s+t+1 and η(T )(ϵ) = n(T )

r (ϵ) = d−t . Therefore, γ (T ′)(f (ϵ)) = t+1 = γ (T )(ϵ)−s.
Thus f ∈ Fϵ,s(T , T ′), and so the result follows from Theorem 2.1.

If s + t + 1 > d − t , then γ (T )(ϵ) = n(T )
r (ϵ) = d − t and η(T )(ϵ) = n(T )

l (ϵ) = s + t + 1. Since t ≤
d
2 − 1, we have

n(T ′)
r (f (ϵ)) − n(T ′)

l (f (ϵ)) = (d − t + s) − (t + 1) = d − 2t + s − 1 ≥ s + 1 > 0. It means that γ (T ′)(f (ϵ)) = n(T ′)
l (f (ϵ)) = t + 1.

Therefore, γ (T ′)(f (ϵ)) = t + 1 = γ (T )(ϵ) − (d − 2t − 1). Note that d − 2t − 1 ≥ 1. We have f ∈ Fϵ,d−2t−1(T , T ′), and so the
result follows from Theorem 2.1. □

3. The sharp lower bound for trees in T (n, d)

In this section, we first prove that the caterpillar tree CPd,⌊ d
2 ⌋
(n− d− 1) minimizes the Steiner k-Wiener index in T (n, d)

for 2 ≤ k ≤ n − 1 by using the transformations given in Section 2. Next, we get the lower bound by computing the Steiner
k-Wiener index of CPd,⌊ d

2 ⌋
(n − d − 1). Keep in mind that we always assume n ≥ 4 and 3 ≤ d ≤ n − 2 for T (n, d).
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Fig. 4. The caterpillar trees CPd,t (s) and CPd,t+1(s).

Lemma 3.1. Let T be a tree in T (n, d) and P = u0u1 . . . ud an induced path of T . Then there exists a caterpillar tree
CP(s1, s2, . . . , sd−1) ∈ T (n, d) with respect to P such that

SW k(T ) ≥ SW k(CP(s1, s2, . . . , sd−1))

for 2 ≤ k ≤ n − 1 with equality if and only if T ∼= CP(s1, s2, . . . , sd−1).

Proof. Recall the definition of star-roots. It is easy to see that a tree is a caterpillar tree if and only if it contains exactly two
star-roots. Note that u1 and ud−1 are two star-roots of T . If u1 and ud−1 are the only star-roots of T , then T is a caterpillar tree
with respect to P , and there is nothing to prove. Otherwise T contains a star-root u different from u1 and ud−1. By star-root
switching on u, we transform T to Tu. By Corollary 2.1, we have SWk(T ) > SWk(Tu) for 2 ≤ k ≤ n − 1. Note that u1 and ud−1
are still star-roots of Tu. We regard Tu as T and repeat this process. We will end up in finite times because Tu contains one
more pendant vertex than T . At last we always get the caterpillar tree CP(s1, s2, . . . , sd−1) with respect to P . □

Lemma 3.2. If CP(s1, . . . , sd−1) is a caterpillar tree in T (n, d) with respect to P = u0u1 . . . ud, then there exists an integer
a ∈

[
1, ⌊ d

2⌋
]
such that

SW k(CP(s1, . . . , sd−1)) ≥ SW k(CPd,a(n − d − 1))

for 2 ≤ k ≤ n − 1. Furthermore, the equality holds for all k if and only if CP(s1, . . . , sd−1) ∼= CPd,a(n − d − 1).

Proof. Denote by T = CP(s1, . . . , sd−1) and i0 = max{1 ≤ i ≤ n − 1 : n(T )
l (uiui+1) = i + 1 +

∑i
j=1sj ≤

n
2 }. Therefore,

n(T )
l (uiui+1) ≤ n(T )

r (uiui+1) if and only if i ≤ i0, that is,

n(T )
l (uiui+1) ≤ n(T )

r (uiui+1), for 1 ≤ i ≤ i0 (1)

and

n(T )
l (ui+1ui) ≤ n(T )

r (ui+1ui), for i0 + 1 ≤ i ≤ d − 2. (2)

In what follows we prove that SWk(CP(s1, . . . , sd−1)) ≥ SWk(CPd,i0+1(n − d − 1)).
For 1 ≤ i ≤ i0 + 1, we define T (i) = CP(0, . . . , 0  

i−1

,
∑i

j=1sj, si+1, . . . , sd−1). Without loss of generality, assume s1 > 0. Thus

ui is a pseudo star-root of T (i) for 1 ≤ i ≤ i0. Moreover, we have⎧⎨⎩
T (1) = T
T (2) = T (1)(U)

u1→u2 , where U = P(u1) \ {u0}

T (i + 1) = T (i)ui→ui+1 , for 2 ≤ i ≤ i0.

By the definition of T (i), we see that

n(T (i))
l (uiui+1) = i + 1 +

i∑
j=1

sj = n(T )
l (uiui+1), for 1 ≤ i ≤ i0.

Therefore, from (1), we have n(T (i))
l (uiui+1) ≤ n(T (i))

r (uiui+1) for 1 ≤ i ≤ i0. Thus Corollary 2.2 implies that

SWk(T (1)) ≥ SWk(T (2)) ≥ · · · ≥ SWk(T (i0 + 1)) = SWk(CP(0, . . . , 0  
i0

,

i0+1∑
j=1

sj, si0+2, . . . , sd−1)).

For 1 ≤ i ≤ d − i0 − 1, denote by

T ′(i) = CP(0, . . . , 0  
i0

, s′i0+1, s
′

i0+2, . . . , s
′

d−(i+1),

d−1∑
j=d−i

s′j, 0, . . . , 0  
i−1

),
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where s′i0+1 =
∑i0+1

j=1 sj and s′j = sj for i0 + 2 ≤ j ≤ d − 1. Without loss of generality, assume that sd−1 > 0. Thus ud−i is a
pseudo star-root of T ′(i) for 1 ≤ i ≤ d − i0 − 2. Moreover, we have⎧⎪⎨⎪⎩

T ′(1) = T (i0 + 1)

T ′(2) = T ′(1)(U
′)

ud−1→ud−2
, where U ′

= P(ud−1) \ {ud}

T ′(i + 1) = T ′(i)ud−i→ud−(i+1) , for 2 ≤ i ≤ d − i0 − 2.

Similarly, from (2), we have n(T ′(i))
l (ud−iud−i−1) ≤ n(T ′(i))

r (ud−iud−i−1) for 1 ≤ i ≤ d− i0 − 2. Thus Corollary 2.2 implies that

SWk(T ′(1)) ≥ SWk(T ′(2)) ≥ · · · ≥ SWk(T ′(d − i0 − 1)) = SWk(CP(0, . . . , 0  
i0

,

d−1∑
j=1

sj, 0, . . . , 0  
d−i0−2

)).

By the arguments above, we have SWk(T (1)) ≥ SWk(T ′(d − i0 − 1)), that is,

SWk(CP(s1, . . . , sd−1)) ≥ SWk(CPd,i0+1(n − d − 1)).

If i0 +1 ≤ ⌊
d
2⌋, then take a = i0 +1 and the result follows. If i0 +1 > ⌊

d
2⌋, since CPd,i0+1(n−1− d) ∼= CPd,d−(i0+1)(n−1− d),

then take a = d − (i0 + 1) and the result follows. □

Lemma 3.3. If CPd,t (n − d − 1) is a caterpillar tree in T (n, d) with respect to P = u0u1 . . . ud, then we have

SW k(CPd,t (n − d − 1)) ≥ SW k(CPd,⌊ d
2 ⌋
(n − d − 1))

for 2 ≤ k ≤ n − 1. Furthermore, the equality holds for all k if and only if CPd,t (n − d − 1) ∼= CPd,⌊ d
2 ⌋
(n − d − 1).

Proof. Since CPd,t (n − d − 1) ∼= CPd,d−t (n − d − 1), without loss of generality, we assume that t ≤ ⌊
d
2⌋. If t = ⌊

d
2⌋, there is

nothing to prove. Otherwise t ≤ ⌊
d
2⌋ − 1. By Corollary 2.3, we have SWk(CPd,t+i(n− d− 1)) ≥ SWk(CPd,t+i+1(n− d− 1)) for

0 ≤ i ≤ ⌊
d
2⌋ − t − 1. It follows our result. □

Combining Lemmas 3.1–3.3, we get our main result immediately.

Theorem 3.1. For T ∈ T (n, d)with 3 ≤ d ≤ n−2, we have SW k(T ) ≥ SW k(CPd,⌊ d
2 ⌋
(n−d−1)) for 2 ≤ k ≤ n−1. Furthermore,

the equality holds for all k if and only if T ∼= CPd,⌊ d
2 ⌋
(n − d − 1).

We recall that Theorem 3.1 provides a generalization of the result known for theWiener index [9], i.e., it yields this result
by setting k = 2. To make our results more clear, we present a specific example.

Example 1. The tree T given in Fig. 5 is in T (16, 6). Firstly, by star-root switching, we transform T into a caterpillar tree
as the proof of Lemma 3.1. Since v5 is a star-root of T , we transform T to T ′

= Tv5 . Since v7 is a star-root of T ′, we
transform T ′ to T ′′

= T ′
v7

= CP(1, 4, 2, 1, 1). Next, by pseudo star-root switching, we transform T ′
v7

into CP6,a(9) for some
a ∈ [1, 3] as the proof of Lemma 3.2. By simple calculation, the i0 defined in the proof of Lemma 3.2 is equal to 2. Denote
by T (1) = CP(1, 4, 2, 1, 1). Note that i0 + 1 = 3. Since u1 is a pseudo star-root of T (1) and nT (1)

l (u1u2) ≤ nT (1)
l (u1u2),

we transform T (1) to T (2), where T (2) = T (1)({v1})
u1→u2 = CP(0, 5, 2, 1, 1). Similarly, we transform T (2) to T (3) where

T (3) = T (2)u2→u3 = CP(0, 0, 7, 1, 1). Denote by T ′(1) = T (3). Note that d− i0 −1 = 3. Since u5 is a pseudo star-root of T ′(1)
and nT ′(1)

l (u5u4) ≤ nT ′(1)
l (u5u4), we transform T ′(1) to T ′(2), where T ′(2)({v9})

= T ′(1)u5→u4 = CP(0, 0, 7, 2, 0). Similarly, we
transform T ′(2) to T ′(3), where T ′(3) = T ′(2)u4→u3 = CP(0, 0, 9, 0, 0) = CP6,3(9). Since 3 =

6
2 , we get the extremal graph.

Thus SWk(T ) > SWk(CP6,3(9)) for 2 ≤ k ≤ 15.

In order to get the lower bound of Steiner Wiener index for the graphs in T (n, d), we only need to calculate the Steiner
Wiener index of CPd,⌊ d

2 ⌋
(n − d − 1).

Theorem 3.2. For 2 ≤ k ≤ n − d, the Steiner k-Wiener index of CPd,⌊ d
2 ⌋
(n − d − 1) is given by

SW k(CPd,⌊ d
2 ⌋
(n − d − 1)) = Γ (n, d, k),

where Γ (n, d, k) =
n(d+k)−k(d+1)

n

(n
k

)
− 2

[( d
2 +1
k+1

)
+

( n
k+1

)
−

(n− d
2

k+1

)]
for d even and Γ (n, d, k) =

n(d+k)−k(d+1)
n

(n
k

)
−

[( d+3
2

k+1

)
+

( d+1
2

k+1

)
+ 2

( n
k+1

)
+

(n− d+1
2

k

)
− 2

(n− d−1
2

k+1

)]
for d odd.
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Fig. 5. The graphs in Example 1.

Proof. From Lemma 2.3, we have

SWk(CPd,⌊ d
2 ⌋
(n − d − 1)) = (n − 1)

(
n
k

)
−

∑
e∈E(T )

[(
γ (e)
k

)
+

(
η(e)
k

)]

= (n − 1)
(
n
k

)
−

⎡⎣ ⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]
+

d−⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]
+ (n − d − 1)

(
n − 1

k

)⎤⎦
= (n − 1)

(
n
k

)
− (n − d − 1)

(
n − 1

k

)
−

⎡⎣ ⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]
+

d−⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]⎤⎦
=

n(d + k) − k(d + 1)
n

(
n
k

)
−

⎡⎣ ⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]
+

d−⌊
d
2 ⌋∑

i=1

[(
i
k

)
+

(
n − i
k

)]⎤⎦ .

We only consider the case that d is even and the other case is similar. Now ⌊
d
2⌋ = d−⌊

d
2⌋ =

d
2 . Note that

( a
k+1

)
+

(a
k

)
=

(a+1
k+1

)
for any positive integers a and k. We have,

d
2∑

i=1

[(
i
k

)
+

(
n − i
k

)]
+

d− d
2∑

i=1

[(
i
k

)
+

(
n − i
k

)]

=2

d
2∑

i=1

[(
i
k

)
+

(
n − i
k

)]

=2

d
2∑

i=1

(
i
k

)
+ 2

d
2∑

i=1

(
n − i
k

)

=2

⎡⎣(
1

k + 1

)
+

⌊
d
2 ⌋∑

i=1

(
i
k

)⎤⎦ + 2

⎡⎣(
n −

d
2

k + 1

)
+

d
2∑

i=1

(
n − i
k

)
−

(
n −

d
2

k + 1

)⎤⎦
=2

( d
2 + 1
k + 1

)
+ 2

(
n

k + 1

)
− 2

(
n −

d
2

k + 1

)
.

It follows that

SWk(CPd,⌊ d
2 ⌋
(n − d − 1)) =

n(d + k) − k(d + 1)
n

(
n
k

)
− 2

[( d
2 + 1
k + 1

)
+

(
n

k + 1

)
−

(
n −

d
2

k + 1

)]
. □

Now we give the lower bound of Steiner Wiener index for trees in T (n, d).

Corollary 3.1. For T ∈ T (n, d) with 3 ≤ d ≤ n − 1, we have

SW k(T ) ≥ Γ (n, d, k)

for 2 ≤ k ≤ n − 1. Furthermore, if the equality holds for all k then T ∼= CPd,⌊ d
2 ⌋
(n − d − 1).
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Table 1
Γ (n, d, k) for 5 ≤ n ≤ 19 and 3 ≤ d ≤ 17.

(n, d, k) Γ (n, d, k) (n, d, k) Γ (n, d, k) (n, d, k) Γ (n, d, k) (n, d, k) Γ (n, d, k)

(5, 3, 2) 18 (5, 3, 3) 27 (6, 3, 2) 28 (6, 3, 3) 56
(6, 4, 2) 31 (6, 4, 3) 62 (7, 3, 2) 40 (7, 3, 3) 100
(7, 4, 2) 44 (7, 4, 3) 110 (7, 5, 2) 50 (7, 5, 3) 125
(8, 3, 2) 54 (8, 3, 3) 162 (8, 4, 2) 59 (8, 4, 3) 177
(8, 5, 2) 67 (8, 5, 3) 201 (8, 6, 2) 75 (8, 6, 3) 225
(9, 3, 2) 70 (9, 3, 3) 245 (9, 4, 2) 76 (9, 4, 3) 266
(9, 5, 2) 86 (9, 5, 3) 301 (9, 6, 2) 96 (9, 6, 3) 336
(9, 7, 2) 108 (9, 7, 3) 378 (10, 3, 2) 88 (10, 3, 3) 352
(10, 4, 2) 95 (10, 4, 3) 380 (10, 5, 2) 107 (10, 5, 3) 428
(10, 6, 2) 119 (10, 6, 3) 475 (10, 7, 2) 134 (10, 7, 3) 536
(10, 8, 2) 149 (10, 8, 3) 596 (11, 3, 2) 108 (11, 3, 3) 486
(11, 4, 2) 116 (11, 4, 3) 522 (11, 5, 2) 130 (11, 5, 3) 585
(11, 6, 2) 144 (11, 6, 3) 648 (11, 7, 2) 162 (11, 7, 3) 729
(11, 8, 2) 180 (11, 8, 3) 810 (11, 9, 2) 200 (11, 9, 3) 900
(12, 3, 2) 130 (12, 3, 3) 650 (12, 4, 2) 139 (12, 4, 3) 695
(12, 5, 2) 155 (12, 5, 3) 775 (12, 6, 2) 171 (12, 6, 3) 855
(12, 7, 2) 192 (12, 7, 3) 960 (12, 8, 2) 213 (12, 8, 3) 1065
(12, 9, 2) 237 (12, 9, 3) 1185 (12, 10, 2) 261 (12, 10, 3) 1305
(13, 3, 2) 154 (13, 3, 3) 847 (13, 4, 2) 164 (13, 4, 3) 902
(13, 5, 2) 182 (13, 5, 3) 1001 (13, 6, 2) 200 (13, 6, 3) 1100
(13, 7, 2) 224 (13, 7, 3) 1232 (13, 8, 2) 248 (13, 8, 3) 1364
(13, 9, 2) 276 (13, 9, 3) 1518 (13, 10, 2) 304 (13, 10, 3) 1672
(13, 11, 2) 334 (13, 11, 3) 1837

For k = 2, 3, we list the lower bound Γ (n, d, k) for 5 ≤ n ≤ 19 and 3 ≤ d ≤ 17 in Table 1.
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