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a b s t r a c t

The eccentricity matrix E(G) of a graph G is derived from the distance matrix by keeping
for each row and each column only the largest distances and leaving zeros in the
remaining ones. The E-eigenvalues of a graph G are those of its eccentricity matrix E(G).
The E-spectrum of G is the multiset of its E-eigenvalues, where the largest one is the
E-spectral radius. In this paper, we proceed to study the algebraic properties of the
E-spectrum. In particular, we give a condition to connected graphs with cut vertices so
that their eccentricity matrices are irreducible. The latter partially answers the problem
given in Wang et al. (2018). We determine the lower and upper bounds for the E-
spectral radius of graphs, and we identify the corresponding extremal graphs. Finally,
we investigate the least E-eigenvalue of graphs, and list the E-eigenvalues of trees with
order 8.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The graphs considered here are simple and connected graphs. Let G = (V (G), E(G)) be a graph with order n = |V (G)|
and size m = |E(G)|. The distance dG(v, w) between two vertices v and w is the minimum length of the paths joining
them. Let D(G) = (duv) be the distance matrix of G, where duv = d G (u, v). The eccentricity εG(u) of the vertex u ∈ V (G) is
given by εG(u) = max{d(u, v) | v ∈ V (G)}. Subscripts and arguments in the notation will be omitted, when they are clear
from the context. The radius and diameter, denoted by rad(G) and diam(G) respectively, are defined as follows:

r = rad(G) = min{ε(u)|u ∈ V (G)} and d = diam(G) = max{ε(u)|u ∈ V (G)}.

The eccentricity matrix of G, denoted by E(G), is constructed from the distance matrix D(G), retaining the largest
distances in each row and each column, while other elements of the distance matrix are set to zero. To be more precise,
the elements of the eccentricity matrix E(G) = (ϵuv) of G are defined as follows [26]:

ϵuv =

{
d(u, v) if d(u, v) = min{ε(u), ε(u)},
0 otherwise.

which gives an equivalent definition of the Dmax-matrix, due to Randić [23].
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The eccentricity matrix can be viewed as the opposite of the adjacency matrix. In fact, the adjacency matrix (of a
connected graph) is constructed from the distance matrix by keeping for each row and each column only the smallest
distances, which correspond to adjacent vertices. From this point of view, these two matrices express two extremes of
distance-like matrix. According to Randić [23] the eccentricity matrix might have interesting applications not only in
Chemical Graph Theory but also in Graph Theory due to the role of eccentricities in graphs. Very recently, some further
spectral properties and the energy of eccentricity matrix are investigated in [22,28].

We now introduce some notation and terminology borrowed from the spectral and chemical graph theory. The
(ordinary) graph spectrum is formed by the eigenvalues of the adjacency matrix A(G) [2]. In order to distinguish the
eigenvalues of different graph matrices, the eigenvalues of A(G) are said to be A-eigenvalues. Correspondingly, the
eigenvalues with respect to D(G) and E(G) are respectively called to the D-eigenvalues and the E-eigenvalues, and form the
D-spectrum and the E-spectrum, respectively. Since E(G) is symmetric, the E-eigenvalues are real. Let ξ1 > ξ2 > · · · > ξk
be all the distinct E-eigenvalues. Therefore, the E-spectrum can be written as

SpecE (G) =

{
ξ1 ξ2 · · · ξk
m1 m2 · · · mk

}
,

where mi is the multiplicity of the eigenvalue ξi (1 ≤ i ≤ k) and ξ1 is called the E-spectral radius of G which is denoted
by ξ (G). The spectral radius of a graph matrix is possibly the most investigated eigenvalue, since it is investigated in
numerous papers (see, e.g., [15,20,25,29]), there is a survey paper [4] and a monograph [24] collecting many important
results.

One of the most important facts is that the adjacency and distance matrix of connected graphs is irreducible, but it may
unfit for the eccentricity matrix. In fact, let Kn and Ka,b denote, respectively, the complete graph and complete bipartite

graph, then E(Kn) = Jn − In is irreducible, while, E(Ka,b) =

(
2(Ja − Ia) O

O 2(Jb − Ib)

)
is reducible, where In and Jn are the

identity matrix and all-one matrix, respectively. The problem of characterizing the connected graphs whose eccentricity
matrix is irreducible naturally arises. Thus, the authors [26] put forward the following question:

For which connected graphs the eccentricity matrix is either reducible or irreducible?
Very recently, Wang et al. [26] showed that the eccentricity matrix of trees is irreducible, and further investigated

the relations between the eigenvalues of the adjacency and eccentricity matrices. They also gave some applications of
this new matrix in terms of molecular descriptors. For others details on this new matrix and the various Randić-type
descriptors, we refer the readers to [9,21,23]. In this paper, we proceed to investigate the E-spectra of graphs.

The paper is organized as follows. In Section 2, we give a sufficient condition for graphs with cut vertices to get a
irreducible eccentricity matrix. In Section 3, we determine the upper bound of the least E-eigenvalues. In Section 4, we
determine the upper and lower bounds of E-spectral radius of graphs, and characterize the corresponding extreme graphs.
In Section 5, we give some concluding remarks and we propose further directions of research for this graph matrix. In
the appendix we depict the trees of order 8 and we list the corresponding E-spectra.

2. Irreducibility of eccentricity matrix

A matrix M is said to be irreducible if it is not permutationally similar to an upper triangular block matrix. In other
words M is reducible if there exists a permutation matrix P such that

M = PT
(
A B
O C

)
P,

where A and C are square blocks.
To determine whether a matrix is irreducible, it is useful to consider its corresponding matrix graph. For a symmetric

matrix M of order n, its matrix graph GM is defined as follows. The vertices of GM are 1, . . . , n, and distinct vertices i, j are
adjacent if and only if Mij ̸= 0. It is well-known that M is irreducible if and only if GM is connected (see [17], Theorem
6.2.24). Using this statement, we give the following example.

Example 1. Let Cn be the cycle with vertex set {v0, . . . , vn−1} such that vi ∼ vi+1 for 0 ≤ i ≤ n − 1(mod n). Denote by
E(Cn) = (ϵij)n×n the eccentricity matrix of Cn and GE the matrix graph of E(Cn). Note that ε(v) = ⌊n/2⌋ for any v ∈ V (Cn)
and d(vi, vj) = min{j − i, n + i − j} for any vi, vj ∈ V (Cn) and i < j. We have d(vi, vj) = min{ε(vi), ε(vj)} = ⌊n/2⌋ if and
only if j − i = ⌊n/2⌋ or ⌈n/2⌉ if and only if vi ∼ vj in GE . If n = 2k, then vi ∼ vi+k(mod n) in GE for 0 ≤ i ≤ n. For
0 ≤ i ≤ k, since i+k+k = i(mod n), the vertices {vi, vi+k} induces a K2 which is a connected component of GE . Therefore,
we have GE

= kK2 and thus E(C2k) is reducible. If n = 2k + 1, then v0 ∼ vk ∼ v2k ∼ · · · ∼ vik ∼ v(i+1)k ∼ · · · in GE . Since
gcd(k, 2k + 1) = 1, we have ik = jk(mod 2k + 1) if and only if j = i(mod 2k + 1). It means that v0, vk, . . . , v(2k−1)k, v2k2

are all distinct. Therefore, GE
= v0vkv2k · · · v2k2 is a cycle of order 2k + 1 and thus E(C2k+1) is irreducible.

From this example, we find that it seems not easy to determine whether the eccentricity matrix of a graph is irreducible
or not. In what follows we give a class of graphs whose eccentricity matrices are irreducible.
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Fig. 1. The graph in the proof of Theorem 2.1.

Theorem 2.1. Let G be a connected graph with order n and a cut vertex vc ∈ V (G). If G − vc contains a component T which
is a tree such that εG(vc) = d(vc, v) for some v ∈ V (T ), then E(G) is irreducible.

Proof. Let A′ be the matrix obtained from E(G) by setting to 1 each nonzero entry of E(G). Let G′ such that A′
= A(G′). If

so, A′ is irreducible if and only if G′ is a connected graph. Evidently, if A′ is irreducible, then we also obtain that E(G) is
irreducible, as well.

Let T ∗
= {v ∈ T : d(vc, v) = ε(vc)}. In view of the assumptions, we have T ̸= ∅, and let v∗

∈ T ∗. Obviously, vc is
adjacent (in G′) to each vertex of T ∗.

Consider now any vertex u ∈ G \ T , and let vu be a vertex at maximum distance from u. We have the following chain
of inequalities:

ε(u) = d(u, vu) ≤ d(u, vc) + d(vc, vu) ≤ d(u, vc) + d(vc, v
∗) = d(u, v∗),

where the last equality is due by the assumption of vc being a cut-vertex. By the above chain, we get that u is adjacent
to v∗ in G′.

Now we focus our attention to the vertices in T . If u ∈ T is a vertex whose most distant vertex vu is in G \ T , then u
is adjacent (in G′) to some vertex of G \ T , and we are done due to the previous case. Also, if u ∈ T ∗, we are also done,
since u is adjacent to vc . Hence, it remains to consider the vertices u ∈ T \ T ∗ whose most distant vertex vu is within T .
We have the following subcases:

Case 1. The path between u and vu (the (u, vu)-path) does not intersect the path between vc and v∗. In the latter case, let
x be the vertex in the (u, vu)-path closest to the vertex y in the (vc, v

∗)-path. Since ε(vc) = d(vc, v
∗), it is d(y, vu) ≤ d(y, v∗).

Therefore, we get

d(u, vu) = d(u, x) + d(x, vu) < d(u, x) + d(y, vu) < d(u, x) + d(x, y) + d(y, v∗) = d(u, v∗),

that is a contradiction to vu being at maximal distance from u. Hence, the (u, vu)-path must encounter the (vc, v
∗)-path.

Case 2. u takes the role of x, and vu is either u1 or u2 (cf. Fig. 1). If so, we have the following chain of inequalities:

d(vc, vu) = d(vc, u) + d(u, vu) ≤ d(vc, u) + d(u, v∗) = d(vc, v
∗).

The latter means that d(u, vu) = d(u, v∗), so u is adjacent to v∗ and we are done.
Case 3. u takes the role of u1 and vu takes the role of u2, x and y might be the same vertex (cf. Fig. 1). If so, note that

because of ε(vc) = d(vc, v
∗), it is d(x, vu) ≤ d(x, v∗), therefore

d(u, vu) = d(u, x) + d(x, vu) ≤ d(u, x) + d(x, v∗) = d(u, v∗),

and again u is adjacent to v∗ in G′.
Case 4. u takes any other position and vu is some (pendant) vertex of T . If so, u is adjacent to vu = w1 in G′. Let us

consider w1 instead. If the most distant vertex from w1, say vw1 , lies in G \ T , or in T ∗, or it falls in Case 3, we are done
since u is adjacent to w1, and w1 is adjacent to v∗ or vc . If vw1 = w2 ∈ T does not fall in any of the previous situations, it
means that w1 is positioned as u2 and w2 is positioned as u1 (according to Fig. 1). In such situation, we consider vw2 = w3
and check its position. Note that if w3 = w1, then we are also done, as we get the configuration described in Case 3.

Eventually, we can reuse the latter routine up to some wn which, due to T being finite, falls in Case 3 (or it is in T ∗ or
G \ T ), and then u is joined to v∗ or to vc by the path (in G′) of vertices wi.

Thus, for all u ∈ G′, (u, vc) ∈ E(G′), and then the proof is complete. □

The following two corollaries immediately follows from Theorem 2.1.
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Corollary 2.2 ([26]). Let T be a tree. Then E(T ) is irreducible.

Let G1 and G2 be two disjoint rooted graphs, whose roots are v1 ∈ V (G1) and v2 ∈ V (G2), respectively. The graph
G1∇v1v2G2 is obtained by identifying v1 and v2.

Corollary 2.3. Let H be a connected graph and v ∈ V (H). If T is tree with a pendant vertex v∗
∈ V (T ) such that

ε H (v) ≤ ε T (v
∗), then the eccentricity matrix of the graph G = H∇vv∗T , E(G), is irreducible.

3. The least E-eigenvalue of graphs

The least eigenvalue of graphs has been often studied in the literature. For example, several scholars have paid attention
to distance-regular graphs with extremal least A-eigenvalue (cf. [1,12,19]), and the graphs with least A-eigenvalue not less
than −2 which are the generalized line graphs and the graphs represented in root system E8 (cf. [3,5] for example).

We here consider the least E-eigenvalue of graphs, which involves the so called antipodal graphs. Let G be a connected
graph with u ∈ V (G). The set of vertices at distance k from u is denoted by Gk(u) (0 ≤ k ≤ ε(u)). A graph G of diameter d
is called antipodal if, for any given vertex u ∈ V (G), the set {u} ∪ Gd(u) consists of vertices which are mutually at distance
d. In other words, there exists a partition of the vertex set into classes (called the fibres of G) with the property that two
distinct vertices are in the same class iff they are at distance d (see, for instance, Godsil [13]). If all the fibres have the
same cardinality, say r , we say that G is an r-antipodal graph. Obviously, the complete k-partite graph Kn1,n2,...,nk is an
antipodal graphs. Moreover, the complete graph Kn is n-antipodal. The regular multipartite graph Ka,a,...,a, the even cycle
C2t and the cube are 2-antipodal graphs. It is easy to see that the E-matrix of r-antipodal graph G with diameter d (r ≥ 2)
is as follows

E(G) =

⎛⎜⎜⎝
d(Jr − Ir )

d(Jr − Ir )
. . .

d(Jr − Ir )

⎞⎟⎟⎠ (1)

whose least E-eigenvalue is −d.

Theorem 3.1. Let G be a connected graph with order n and diameter d, and let ξn(G) be the least E-eigenvalue of G. Then
ξn(G) ≤ −d, with equality only if G is an r-antipodal graph with diameter d (r ≥ 2). In particular,

(i) ξn(G) = −1 if and only if G is the complete graph Kn (n ≥ 2).
(ii) ξn(G) = −2 if and only if G is the complete multipartite graph Kn1,n2,...,nk (n ≥ 4, k ≥ 2).

Proof. Let P be the diametrical path of G with diametrical vertices u and v. Then dP (u, v) = d, and the submatrix of

E(G) index by u, v of is B =

(
0 d
d 0

)
with the least eigenvalue λ(B) = −d. Hence, ξn(G) ≤ λ(B) = −d. If G is r-antipodal

(r ≥ 2), by (1) we get ξn(G) = −d.
Clearly, (i) holds. We next show (ii). By ξn(G) = −2 we get diam(G) = 2. Clearly n ≥ 4, and we get two cases.
Case 1. The maximum degree ∆(G) ≤ n − 2. ThenE(G) = 2A(G). Hence, the least A-eigenvalue of the complementary

graph G is −1, and so G is the disjoint union of some complete graphs Kni (i = 1, 2, . . . , n). Thereby, G is the complete
multipartite graph Kn1,n2,...,nk .

Case 2. ∆(G) = n − 1. If G is a tree, then G ∼= K1,n−1 with ξn(G) = −2. Otherwise, by ∆(G) = n − 1 and diam(G) = 2
we get that G contains G1 and G2 as its subgraphs, where G1 is the triangle with a pendant edge and G2 = K1,1,2. For the
former, the submatrix indexed by V (G1) is always

E(G1) =

⎛⎜⎝0 0 1 2
0 0 1 2
1 1 0 1
2 2 1 0

⎞⎟⎠ .

Therefore, ξn(G) ≤ ξn(G1) ≈ −2.86489, a contradiction. For the latter, if n = 4 then G = G2 and thus ξn(G) = −2, if n ≥ 5
then G1 is a subgraph of G, a contradiction, as well. □

Graphs with the same E-spectrum are called E-cospectral graphs graphs. A graph G is said to be determined by its
M-spectrum if there is no other non-isomorphic graph with the same spectrum. This problem was first considered in
Chemistry [14], and we refer the readers to [7,8] for details on this topic. We next consider the spectral determination.

Corollary 3.2. The graphs Kn and Ka1,a2,...,ak are determined by their E-spectra.

Proof. Let H be a graph E-cospectral to G = Ka1,a2,...,ak . So, n(H) = n(G) = n. By Theorem 3.1(ii) we get H = Kb1,b2,...,bs .
Easily to get the E-eigenvalues of G are 2(ai − 1) (1 ≤ i ≤ k) and −2 with multiplicity n − k. Hence, k = s and ai = bi
(1 ≤ i ≤ k), and thus H and G are isomorphic. □
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Remark 3.3. About Theorem 3.1 and Corollary 3.2,

(i) The complete multipartite graph Ka1,a2,...,an is determined by the D-spectrum [18]; while it remains open for the
A-spectrum.

(ii) By Theorem 3.1(ii) we get ξ (T ) ≤ −2 with equality if and only if T = K1,n−1 when G = T is a tree. This solves a
conjecture posed by Wang et al. ([26], Conjecture 2), which was proposed by observing the list of E-eigenvalues of
trees with order at most 7.

4. The bounds of E-spectral radius of graphs

In this section, we investigate the lower and upper bounds of E-spectral radius of graphs and characterize the
corresponding extremal graphs. We next point out several basic properties about the E-spectral radius of graphs.

Let B = (Bij) be an m × n matrix. Then si(B) will denote the ith row sum of B, i.e., si(B) =
∑n

j=1 Bij, where 1 ≤ i ≤ m.
Let ρ(B) be the spectral radius of B.

Lemma 4.1. Let B be a n × n matrix.

(i) [11] If B is a real symmetric matrix, and if λ is an eigenvalue of B with an eigenvector x whose entries are nonnegative.
Then

min
1≤i≤n

si(B) ≤ λ ≤ max
1≤i≤n

si(B).

(ii) [17] If B is nonnegative, then there exists a nonnegative eigenvector x such that Bx = ρ(B)x.

Observe that the eccentricity matrix of a connected nontrivial graph is a real symmetric nonnegative matrix whose
rows each have a positive element. The following result follows from the above lemma and the algebraic properties of
E(G).

Lemma 4.2. Let G be a connected nontrivial graph with ξ -spectral radius ξ (G).

(i) Then ξ (G) > 0 and it has an eigenvector with nonnegative entries.
(ii)

∑n
i=1 ξi = 0 and S =

∑n
i=1 ξ 2

i = 2
∑

1≤i<j≤n E
2
ij (G).

As mentioned in the introduction, the eccentricity matrices of connected graphs are not irreducible in general (but
they are irreducible for trees [26]). Hence, the theory of the nonnegative irreducible matrix cannot be directly applied to
eccentricity matrices. In order to obtain the main result in this section, we need a result due to Hoffman. Let G be a graph
with k distinct A-eigenvalues µ1 > µ2 > · · · > µk. Hoffman [16] shown that G is a connected regular graph with order
n if and only if

n
k∏

i=2

(A − µiIn) =

k∏
i=2

(µ1 − µi)Jn

holds.
Dress and Stevanović [10] generalized the above result to real symmetric matrices in the following way. Let B be a real

symmetric n×n matrix over real field R, and {β1, β2, . . . , βt} be any family of elements from R. Let s(B) = {µ|dim Vµ > 0}
be the set of its distinct eigenvalues, and Vµ = {αµ | Mαµ = µαµ} be the eigenspace w.r.t. the eigenvalue µ. If
αµ1 , αµ2 , . . . , αµrµ is an orthonormal basis of Vµ for every eigenvalue µ in s(B), then they [10] obtained

t∏
i=1

(B − βiI) =

∑
µ∈s(B)\{β1,...,βt }

t∏
i=1

(µ − βi)
rµ∑
i=1

αµiα
T
µi

. (2)

Since we are interested in the largest eigenvalue, we give a variant of the Hoffman-type identity in terms of Hermitian
matrices with simple spectral radius.

Let y∗
= yT be the transpose of complex conjugates of the vector y.

Theorem 4.3. Let H be a Hermitian matrix of order n with simple spectral radius. Then H has exactly k ≥ 2 distinct eigenvalues
if and only if there exists k real numbers λ1, λ2, . . . , λk with λ1 > λ2 > · · · > λk such that

k∏
j=2

(H − λjI) =

k∏
j=2

(λ1 − λj)yy∗ and Hy = λ1y. (3)

Moreover, λ1 > λ2 > · · · > λk are the distinct eigenvalues of H.
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Proof. Note that the necessity can be derived from (2). Here, we provide a more elementary proof.
Let λ1 > λ2 > · · · > λk be the k distinct eigenvalues of H with λ1 being simple. Let f (x) =

∏k
i=2(x − λi). Then the

eigenvalues of f (H) are f (λ1) with multiplicity one and 0 with multiplicity n − 1. Hence, the rank of f (H) is one, and
consequently there exist two non-zero n-vectors x, y such that

f (H) = xy∗ and f (H)x = (y∗x)x. (4)

The second one of (4) indicates that y∗x is just the only one non-zero eigenvalue of f (H). Actually, y∗x = f (λ1). Due to
the first one of (4), we get y∗f (H) = f (λ1)y∗ which leads to

f (H)y = f (H)∗y = f (λ1)y.

Thereby, both x and y are the eigenvectors of f (H) associated with eigenvalue f (λ1). Since f (H) is diagonalizable, then
geometric multiplicity of f (λ1) is one. Hence, there exists a non-zero number b ∈ R such that x = by. Therefore,

f (H) =

k∏
j=2

(H − λjI) = byy∗. (5)

Note that the minimal polynomial of H is m(x) =
∏k

i=1(x − λi) and m(H) =
∏k

i=1(H − λiI) = O. Then, by (5) we obtain

b(H − λ1I)yy∗
= O, that is, ∥y∥2

2(H − λ1I)y = 0. (6)

Since y ̸= 0, then ∥y∥2
2 > 0 which along with (6) forces to (H − λ1I)y = 0, and consequently

Hy = λ1y.

We now show the sufficiency. Since (H − λ1I)y = 0, we have
∏k

j=1(H − λjI) = O. We claim that p(x) =
∏k

j=1(x − λj)
is the minimal polynomial of H . Since otherwise, the minimal polynomial q(x)|p(x) where deg(q(x)) < deg(p(x)). Note
that x − λ1 must be a factor of q(x) due to λ1 is assumed to be an eigenvalue. Without loss of generality, assume that
q(x) =

∏k′
j=1(x − λj) where k′ < k. Thus

∏k′
j=1(H − λjI) = O. If k′

= 1 then H = λ1I , which, returns to (3), will produce a
contradiction. Hence k′

≥ 2 and then (x−λ1)(x−λ2)|q(x). As proved in the necessity, from (5) it follows that there exists
c ̸= 0 such that

∏k′
j=2(H − λjI) = cyy∗. Thus

k∏
j=2

(λ1 − λj)
k′∏
j=2

(H − λjI) = c
k∏

j=2

(λ1 − λj)yy∗
= c

k∏
j=2

(H − λjI).

Set f (x) =
∏k

j=2(λ1 −λj)
∏k′

j=2(x−λj)− c
∏k

j=2(x−λj). Then f (H) = O, and hence q(x)|f (x). Thus f (λ1) = f (λ2) = 0, which
gives that

k′∏
j=2

(λ1 − λj) = c =

∏k
j=2(λ1 − λj)∏k

j=k′+1(λ2 − λj)
.

Hence
∏k

j=k′+1(λ1 − λj) =
∏k

j=k′+1(λ2 − λj), which is impossible. Thus p(x) =
∏k

j=1(x − λj) is the minimal polynomial of
H . It follows that H has exactly k distinct eigenvalues.

This finishes the proof. □

Note that we can also adopt the spectral decomposition of the matrix H to prove the necessity of Theorem 4.3. Recall,
S = 2

∑
1≤i<j≤n E

2
ij (G) defined in Lemma 4.2.

Theorem 4.4. Let G be connected graph with order n ≥ 2. Then

ξ1 ≤

√
(n − 1)S

n
,

where the equality holds iff ξ1 ̸= ξ2 = ξ3 = · · · = ξn. Furthermore, if ξ1 = n − 1, the upper bound is achieved if and only if G
is the complete graph.

Proof. From Lemma 4.2(ii) it follows that ξ1 = −
∑n

i=2 ξi and S =
∑n

i=1 ξ 2
i . By the Cauchy–Schwarz Inequality we get

ξ 2
1 = (

n∑
i=2

ξi)2 ≤ (n − 1)
n∑

i=2

ξ 2
i = (n − 1)(S − ξ 2

1 ),

which leads to nξ 2
1 ≤ (n − 1)S, and so the inequality follows.
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If ξ2 = ξ3 = · · · = ξn, then the equality holds. On the other hand, if the equality holds, then by the Cauchy–Schwarz
Inequality again, we have ξ2 = ξ3 = · · · = ξn. Assume that ξ1 = ξ2. Then ξ1 = ξ2 = · · · = ξn which together with
Lemma 4.2 results in ξ1 = · · · = ξn = 0, contradicting Lemma 4.2(i). Hence, ξ1 ̸= ξ2 = ξ3 = · · · = ξn.

We now prove the additional claim.
If G is a complete graph of order n, then E(G) = Jn − In. Therefore, its E-eigenvalues are ξ1 = n − 1 with eigenvector

y =
1

√
n (1, 1, . . . , 1)

T and ξ2 = · · · = ξn = −1, so the equality holds.
Conversely, if ξ1 = n − 1, y =

1
√
n (1, 1, . . . , 1)

T and ξ2 = · · · = ξn = −1, in view of (3) in Theorem 4.3 we get
H = Jn − In, which implies that G is a complete graph.

This completes the proof. □

It is worth mentioning that in [27] the graphs with two distinct E-eigenvalues are studied, and it is proved that the
complete graph is the unique one having simple E-spectral radius.

We conclude this section by determining the lower bounds for the E-spectral radius of graphs. The following two
definitions are needed.

Definition 4.1. Let G be a connected graph.

(i) For each vertex vi ∈ V (G), its E-degree is defined to be E(i) =
∑n

j=1 Eij(G).
(ii) Let the E-degree sequence of G be {E(1), E(2), . . . , E(n)}. Then the second E-degree of vi is defined as TE (i) =∑n

j=1 EijE(j).

Definition 4.2. Let G be a connected graph with E-degree sequence {E(1), E(2), . . . , E(n)} and the second E-degree
sequence {TE (1), TE (2), . . . , TE (n)}. Then

(i) G is E-regular if E(i) = k for all i.
(ii) G is pseudo E-regular if TE (i)

E(i) = k for all i.

Theorem 4.5. Let G be connected graph with E-degree sequence {E(1), E(2), . . . , E(n)} and second E-degree sequence
{TE (1), TE (2), . . . , TE (n)}. Then

(i) ξ1 ≥
1
n

∑n
i=1 E(i), where the equality holds if and only if G is E-regular.

(ii) ξ1 ≥

√
T2E (1)+T2E (2)+···+T2E (n)
E2(1)+E2(2)+···+E2(n)

, where the quality holds if and only if G is pseudo E-regular.

Proof. (i) Let x =
1

√
n (1, 1, . . . , 1). Applying Rayleigh quotient to E(G) we obtain

ξ1 ≥
xExT

xxT
=

1
√
n
[E(1), E(2), . . . , E(n)]

1
√
n
(1, 1, . . . , 1)T =

1
n

n∑
i=1

E(i).

If G is E-regular, then the sum of each row of E(G) is a constant k. Thus
∑n

i=1 E(i) = nk. By Lemma 4.1(i), k is the E-spectral
radius. So, ξ1 = k =

nk
n , and the equality follows.

Conversely if equality holds, then x is the eigenvector corresponding to ξ1 and hence E(G)x = ξ1x. This then gives
E(i) = ξ1 for all i. Since E(i) is an integer it follows that G is E-regular.

(ii) Let E be the eccentricity matrix of G and X = (x1, x2, . . . , xn) be the unit nonnegative eigenvector of E corresponding
to ξ1. Set

Y =
1√∑n

i=1 E
2(i)

(E(1), E(2), . . . , E(n)).

Then Y is unit positive vector. So we get

ξ1 = ξ1(E) =

√
ξ1(E2) =

√

XE2XT ≥

√

YE2Y T .

Now

YE =
1√∑n

i=1 E
2(i)

(E(1), E(2), . . . , E(n))E =
1√∑n

i=1 E
2(i)

(TE (1), TE (2), . . . , TE (n)).

Thereby

YE2Y T
= YE(YE)T =

T 2
E (1) + T 2

E (2) + · · · + T 2
E (n)

E2(1) + E2(2) + · · · + E2(n)
,
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Fig. 2. The trees of order 8.

and thus

ξ1 ≥

√
T 2
E (1) + T 2

E (2) + · · · + T 2
E (n)

E2(1) + E2(2) + · · · + E2(n)
.

Now assume that G is pseudo E-regular. So TE (i)
E(i) = k for all i. It follows that YE = kY and k =

√
T2E (1)+T2E (2)+···+T2E (n)
E2(1)+E2(2)+···+E2(n)

. Thus
Y is an eigenvector corresponding to k, and so ξ1 = k. Consequently the equality holds.

Conversely if equality holds then Y is the eigenvector corresponding to ξ1, and that YE = ξ1Y . This then implies that
TE (i)
E(i) = ξ1, or in other words G is pseudo E-regular. □

5. Concluding remarks

Among the graph matrices the eccentricity matrix has an exotic behaviour. As we said the eccentricity matrix has
recognized applications in Chemical Graph Theory. However, from a pure mathematical viewpoint, it would be interesting
to find algebraic properties of the matrix which are related to the combinatorial structure of the graph. At this moment,
it remains open the significant problem of characterizing the connected graphs whose eccentricity matrix is irreducible.

We now look back on Theorem 4.4 again. The equality holds in the theorem if and only if the graphs have two distinct
E-eigenvalues with the E-spectral radius being simple. However, it is worth mentioning that a graph with two distinct
E-eigenvalues is not necessary to be a complete graph. Recall that the even cycle C2k has two E-eigenvalues ±k [26].

Naturally, an interesting research problem is put forward as follows.

Problem 1. Characterize the graphs with small number of distinct E-eigenvalues.

For the adjacency matrix on this topic, we turn the readers to see van Dam’s thesis [6] for more details. In the paper [27],
we have investigated all the connected graphs with two distinct E-eigenvalues.
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Table 1
The E-spectra of the trees of order 8.

1 12.5574 −0.5574 −2 −2 −2 −2 −2 −2
1 0 −87 −602 −1920 −3408 −3440 −1824 −384

2 8.2353 1.0861 0 0 0 0 −1.0861 −8.2353
1 0 −69 0 80 0 0 0 0

3 9.7287 1.1629 0 0 0 0 −1.1629 −9.7287
1 0 −96 0 128 0 0 0 0

4 10.6603 1.6056 0 0 0 0 −5.6056 −6.6603
1 0 −96 −248 639 0 0 0 0

5 11.6396 1.7541 0 0 0 0 −2.8402 −10.5535
1 0 −129 −128 612 0 0 0 0

6 10.1789 1.1789 0 0 0 0 −1.1789 −10.1789
1 0 −105 0 144 0 0 0 0

7 12.1456 1.7036 0 0 0 0 −5.5673 −8.2818
1 0 −125 −352 954 0 0 0 0

8 12.4485 1.7394 0 0 0 0 −4.5092 −9.6786
1 0 −136 −312 945 0 0 0 0

9 13.0507 1.8806 0 0 0 0 −3.1839 −11.7475
1 0 −161 −192 918 0 0 0 0

10 13.5394 1.6056 1.6056 0 0 −5.5394 −5.6056 −5.6056
1 0 −141 −656 807 4752 −6075 0 0

11 9.5609 3.9483 0 0 0 0 −3.9483 −9.5609
1 0 −107 0 1425 0 0 0 0

12 13.2736 1.831 0 0 0 0 −5.2736 −9.831
1 0 −152 −416 1260 0 0 0 0

13 12.7881 3.3861 0 0 0 0 −3.3861 −12.7881
1 0 −175 0 1875 0 0 0 0

14 14.6242 1.7421 1.6056 0 0 −4.1053 −5.6056 −8.2609
1 0 −168 −776 1191 5616 −7776 0 0

15 9.3739 4.3739 0 0 0 0 −4.3739 −9.3739
1 0 −107 0 1681 0 0 0 0

16 11.1597 4.0572 0 0 0 0 −4.0572 −11.1597
1 0 −141 0 2050 0 0 0 0

17 11.9426 3.7912 0 0 0 0 −3.7912 −11.9426
1 0 −157 0 2050 0 0 0 0

18 13.6603 3.6603 0 0 0 0 −3.6603 −13.6603
1 0 −200 0 2500 0 0 0 0

19 11.1597 4.0572 0 0 0 0 −4.0572 −11.1597
1 0 −141 0 2050 0 0 0 0

20 13 4.0711 0 0 0 0 −7 −10.0711
1 0 −168 −300 3731 0 0 0 0

21 12.0254 4.7769 0 0 0 0 −5.8112 −10.991
1 0 −161 −108 3669 0 0 0 0

22 14.6346 4.3806 0 0 0 0 −5.644 −13.3711
1 0 −222 −216 4838 0 0 0 0

23 12.9472 5.9472 0 0 0 0 −5.9472 −12.9472
1 0 −203 0 5929 0 0 0 0

We have shown that the eccentricity matrix of a tree is irreducible. Hence, the E-spectral radii of trees are simple
and their associated eigenvectors are non-negative. Along with other techniques, we expect to solve the next problem.
See [26] for some initial discussions.

Problem 2. Which trees have the maximum E-spectral radius?

About the least E-eigenvalue ξn(G) and the diameter of graphs, we put forward the following problem.

Problem 3. Determine the graphs with the least E-eigenvalue ξn(G) = −d (d ≥ 3).

6. Appendix: The E-eigenvalues and E-polynomials of trees

In Fig. 2 we depict the trees of order 8 and in Table 1 we list their E-spectra. Those of trees of order at most 7 have
been included in [26].
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