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ABSTRACT
In this paper, we focus on the dihedral groups and the dicyclic
groups, and consider their corresponding integral Cayley graphs.We
obtain the sufficient conditions for the integrality of the distance
powers �D of the Cayley graph � = X(D2n, S) (resp. � = X(T4n, S))
(n ≥ 3) for a set of nonnegative integers D. In particular, for a prime
p, we show that if � = X(D2p, S) (resp. � = X(T4p, S)) is integral,
then the distance powers of � = X(D2p, S) (resp. � = X(T4p, S)) are
integral Cayley graphs.
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1. Introduction

Let� = (V ,E)be anundirected graphwith vertex setV and edge setE. Its adjacencymatrix
is A(�) = (aij)n×n, with aij = 1 if vertices i and j are adjacent in �, and aij = 0 otherwise.
The distance between two vertices x, y ∈ V , denoted by d(x, y), is the length of a shortest
path connecting them.

LetD be a finite set of nonnegative integers. The distance power �D of� is an undirected
graph with vertex set V, two vertices x and y are adjacent in �D if their distance d(x, y) in
� belongs to D. If � is not connected, it makes sense to allow ∞ ∈ D. Clearly, �∅ is the
graph without edges among V. The edge set of �{0} consists of a single loop at every vertex
of �. If � has no loops, then �{1} = �.

In this paper, we focus on a special class of regular graphs–Cayley graphs. Given
a finite group G and a subset 1 /∈ S ⊆ G with S = S−1, the Cayley graph X(G, S) has
vertex set G and two vertices a, b are adjacent if a−1b ∈ S. X(G, S) is connected if S
generates G.

We say that a graph � is integral if all eigenvalues of A(�) are integers. In 1974, Harary
and Schwenk [1] proposed the problem of classifying all integral graphs. In 2009, Ahmadi
et al. [2] proved that the number of graphs on n vertices with integral spectrum is negligible
compared to the total number of graphs. Thus, it seems plausible to classify all integral
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graphs. However, this turns out to be extremely hard and therefore this problem attracts
much attention, one may see [3–6] for details. For an exhaustive survey in this subject,
one may refer to [7]. In particular, Klotz and Sander [8] proved that for an abelian group
G, X(G, S) is integral if S belongs to the Boolean algebra generated by the subgroups of G.
Alperin and Peterson [9] showed that the converse is true for all integral Cayley graphs over
abelian groups. And Alperin [10] characterized the rational subsets of a finite group and
discussed the relations with the integral Cayley graphs. In [11], Klotz and Sander further
extended the previous results and proved that if � is an integral Cayley graph over the
abelian group G, then every distance power �D is also an integral Cayley graph over G for
certain D.

The above results motivate us to generalize the results in [12] and consider the distance
power of the integral Cayley graph over dihedral groups and dicyclic groups. This paper is
organized as follows. At first, by using the Boolean algebra of the cyclic group 〈a〉, for a setD
of nonnegative integers, we obtain some sufficient conditions for the integrality of a Cayley
graph �D = X(D2n, S(D)) (n ≥ 3) for a certain S(D) derived from S (see Theorem 3.4 and
Corollaries 3.5 and 3.6). In particular, for an odd prime p, we show that if� = X(D2p, S) is
integral, then every distance power of � = X(D2p, S) is integral (see Theorem 3.8). Finally,
in Section 4, we obtain similar results about the distance power of integral Cayley graphs
over the dicyclic groups T4n.

2. Preliminaries

In this section, we will present some notation and several lemmas which will be used later.
We use Zn to denote the additive cyclic group of order n, and Z∗

n is the multiplicative
group of the units of the ring of integers modulo n. For a finite group G, we use Aut(G) to
denote the group of the automorphisms of G.

A representation of a finite group G is a homomorphism ρ : G → GL(V) for some n-
dimensional vector space over the complex field C, where GL(V) denotes the group of
automorphisms of V. The dimension of V is called the degree of ρ. Two representations ρ1
and ρ2 of G on V1 and V2 respectively are equivalent if there is an isomorphism T : V1 →
V2 such that Tρ1(g) = ρ2(g)T for all g ∈ G.

Let ρ : G → GL(V) be a representation. The character χρ : G → C of ρ is defined
by setting χρ(g) = Tr(ρ(g)) for g ∈ G, where Tr(ρ(g)) is the trace of the representation
matrix of ρ(g) for some basis of V. By the degree of χρ we mean the degree of ρ which
is simply χρ(1). If W is a ρ(g)-invariant subspace of V for each g ∈ G, then we call W a
ρ(G)-invariant subspace of V. If the only ρ(G)-invariant subspaces of V are {0} and V, we
call ρ an irreducible representation of G, and the corresponding character χρ an irreducible
character of G.

For a groupG, we denote by IRR(G) and Irr(G) the complete set of non-equivalent irre-
ducible representations of G and the complete set of non-equivalent irreducible characters
of G, respectively.

The following lemma is crucial in our context.

Lemma 2.1 ([13]): Let G be a finite group of order n, S ⊆ G \ {1} be such that S = S−1, and
Irr(G) = {χ1, . . . ,χh}with χi(1) = di(i = 1, . . . , h). Then the spectrum of the Cayley graph
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X(G, S) can be arranged as

Spec(X(G, S)) =
{
[λ11]d1 , . . . , [λ1d1 ]

d1 , . . . , [λh1]dh , . . . , [λhdh]
dh
}
.

Furthermore, for any natural number t, we have

λti1 + λti2 + · · · + λtidi =
∑

s1,...,st∈S
χi

( t∏
l=1

sl

)
.

LetG be a finite group, andFG be the set of all subgroups ofG. Then the Boolean algebra
B(G) is the set whose elements are obtained as arbitrarily finite intersections, unions, and
complements of the elements in FG. The minimal non-empty elements of B(G) are called
atoms. Each element of B(G) is the union of some atoms, and atoms of B(G) are the sets
like [g] = {x | 〈x〉 = 〈g〉, x ∈ G}.

For the cyclic group 〈a〉 of order n, the atoms of B(〈a〉) are the sets [ad] = {al |
gcd(l, n) = d}, where d | n. Then it is obtained

Lemma2.2 ([14]): LetG = 〈a〉 be the cyclic group of order n, and [ad] be one atomof B(〈a〉).
Then [ad]−1 = [ad]. Furthermore, if S ∈ B(〈a〉), then S = S−1.

Lemma 2.3 ([11]): If G is a finite abelian group with nonempty subsets S,T ∈ B(G), then
ST ∈ B(G).

By Lemmas 2.2 and 2.3, we have

Lemma 2.4: Let 〈a〉 be the cyclic group with nonempty subsets S,T ∈ B(〈a〉). Then ST =
ST−1 ∈ B(〈a〉).

3. Distance powers of integral Cayley graphs over dihedral group

In this section, we focus on the dihedral group. The presentation for the dihedral group
D2n (n ≥ 3) is given by

D2n = 〈a, b | an = b2 = 1, bab = a−1〉.

This group has order 2n, and

D2n = {ak, akb | 0 ≤ k ≤ n − 1}.

Now we list the character table of D2n.

Lemma 3.1 ([15]): The character table of D2n is given in Table 1 if n is odd, and in Table 2
otherwise,whereψi and χj are irreducible characters of degree one and two, respectively, and
1 ≤ h ≤ �n−1

2 .

Let A, B be two subsets of a group G. For any character χ of G, we denote χ(A) =∑
a∈A χ(a) and χ(AB) = ∑

a∈A,b∈B χ(ab). Particularly, χ(A2) = ∑
a1,a2∈A χ(a1a2).
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Table 1. Character table of D2n for odd n.

ak bak

ψ1 1 1
ψ2 1 −1
χh 2 cos

(
2khπ
n

)
0

Table 2. Character table of D2n for even n.

ak bak

ψ1 1 1
ψ2 1 −1
ψ3 (−1)k (−1)k

ψ4 (−1)k (−1)k+1

χh 2 cos
(
2khπ
n

)
0

Using the character table of D2n and the Boolean algebra B(〈a〉) generated by the sub-
groups of cyclic group 〈a〉, Lu et al. [12] obtained several necessary and/or sufficient
conditions for the integral Cayley graphs over dihedral group by Lemma 2.1.

Lemma 3.2 ([12]): Let D2n = 〈a, b | an = b2 = 1, bab = a−1〉 be the dihedral group, and
let S = S1 ∪ S2 ⊆ D2n\{1} be such that S = S−1,where S1 ⊆ 〈a〉 and S2 ⊆ b〈a〉. If S1, bS2 ∈
B(〈a〉), then X(D2n, S) is integral.

Lemma 3.3 ([12]): For an odd prime p, let D2p = 〈a, b | ap = b2 = 1, bab = a−1〉 and
S = S1 ∪ S2 be such that 1 /∈ S, S = S−1, where S1 ⊆ 〈a〉, S2 ⊆ b〈a〉. Then the Cayley graph
X(D2p, S) is integral if and only if S1 = ∅ or 〈a〉 \ {1} and S2 = b〈a〉 \ {baj}, b〈a〉 or {baj}
where 0 ≤ j ≤ p − 1.

We concentrate on the connected Cayley graph over the dihedral group without loops,
thus 0,∞ /∈ D and D �= ∅.

Theorem3.4: Let S = S1 ∪ S2 ⊆ D2n\{1} be such that S = S−1 and 〈S〉 = D2n,where S1 ⊆
〈a〉 and S2 ⊆ b〈a〉. Let � = X(D2n, S) be the Cayley graph over D2n. If S1, bS2 ⊆ B(〈a〉) and
D is a set of positive integers, then the distance power�D = X(D2n, S(D)) is an integral Cayley
graph over D2n for some S(D) ⊆ D2n.

Proof: Firstly, we consider the case that D has only one element, say, D = {d}, we aim to
find S(d) = S(d)1 ∪ S(d)2 such that �{d} = X(D2n, S(d)) is an integral Cayley graph over D2n,
where S(d) = (S(d))−1.

If d is a number that is not the distance of any two vertices in �, then the assertion is
confirmed as �{d} = X(D2n, S(d)) with S(d) = ∅.

If d = 1, then by Lemma 3.2, we have �{1} = � = X(D2n, S) is an integral Cayley graph
over D2n.

Now assume that d>1 is a finite distance of two vertices x, y ∈ D2n. Using the relations
an = b2 = 1, bab = a−1, then the last vertex y of a shortest path P connecting x and y in
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� has the form

y = xai1 · · · aik(baj1) · · · (bajl),
where ai1 , . . . , aik ∈ S1, baj1 , . . . , bajl ∈ S2 and k + l = d. This implies

x−1y = ai1 · · · aik(baj1) · · · (bajl) ∈ Sd,

where Sd = {s1s2 . . . sd | si ∈ S for 0 ≤ i ≤ d} is the d-fold product of the set S. To ensure
that there is no path from x to y shorter than p, we need to remove from Sd all multiples
Sm for 0 ≤ m < d with S0 = {1}. Now we consider

S(d) = Sd
∖ ⋃

0�m<d

Sm

=
⎛
⎝ ⋃

k+l=d

Sk1 · Sl2

⎞
⎠∖

⎛
⎝ ⋃

0≤m1+m2<d

Sm1
1 · Sm2

2

⎞
⎠

=
⋃

k+l=d

⎛
⎝Sk1 · Sl2

∖⎛⎝ ⋃
0≤m1+m2<d

Sm1
1 · Sm2

2

⎞
⎠
⎞
⎠

=
⋃

k+l=d

⋂
0≤m1+m2<d

(
Sk1 · Sl2

∖
Sm1
1 · Sm2

2

)

= S(d)1 ∪ S(d)2 , (1)

where

S(d)1 =
⋃

k+l=d
liseven

⋂
0≤m1+m2<d

(
Sk1 · Sl2

∖
Sm1
1 · Sm2

2

)

and

S(d)2 =
⋃

k+l=d
lisodd

⋂
0≤m1+m2<d

(
Sk1 · Sl2

∖
Sm1
1 · Sm2

2

)
.

Then we achieve �{d} = X(D2n, S(d)), where S(d) = (S(d))−1.
Note that, for each baj1baj2 · · · bajt ∈ St2, we have

baj1baj2 · · · bajt =
{
a(j2+j4+···+jt)−(j1+j3+···+jt−1), t is even
ba(j1+j3+···+jt)−(j2+j4+···+jt−1), t is odd

.

Since bS2 ∈ B(〈a〉), we have aji ∈ B(〈a〉) and thus, by Lemma 2.4, we obtain that St2 ∈
B(〈a〉) when t is even, and bSt2 ∈ B(〈a〉) when t is odd.

Next we consider the following cases.
Case 1. l,m2 are all even.
By the arguments above, we have Sl2, S

m2
2 ∈ B(〈a〉), and thus Sk1S

l
2, S

m1
1 Sm2

2 ∈ B(〈a〉). It
leads to that Sk1 · Sl2\Sm1

1 · Sm2
2 ∈ B(〈a〉).

Case 2. l is even andm2 is odd.
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In this case, we have Sl2 ∈ B(〈a〉) and bSm2
2 ∈ B(〈a〉). Therefore, Sk1Sl2 ∈ B(〈a〉) and

Sm1
1 Sm2

2 ∈ bB(〈a〉). It leads to

Sk1 · Sl2
∖
Sm1
1 · Sm2

2 = Sk1 · Sl2 ∈ B(〈a〉).

Combining Case 1 and Case 2, we obtain that S(d)1 ∈ B(〈a〉). Similarly, one can obtain that
bS(d)2 ∈ B(〈a〉). Therefore, by Lemma 3.2, �{d} = X(D2n, S(d)) is an integral Cayley graph
over D2n, where S(d) = S(d)1 ∪ S(d)2 .

Finally, we consider that D contains more elements. Let

D = {d1, d2, . . . , dv}, and S(D)1 =
v⋃

i=1
S(di)1 , S(D)2 =

v⋃
i=1

S(di)2 ,

where d1, d2, . . . , dv are nonnegative integers. Then we have S(D)1 , bS(D)2 ∈ B(〈a〉), and thus
by Lemma3.2we get that the distance power�D = X(D2n, S(D)) is an integral Cayley graph
over D2n, where S(D) = S(D)1 ∪ S(D)2 .

This completes the proof. �

Let G be a finite group, and let X(G, S) be a Cayley graph on G with respect to S.
For any σ ∈ Aut(G), it is well known that σ induces an isomorphism 	σ from X(G, S)
to X(G, σ(S)), where 	σ is defined by 	σ (g) = σ(g) for g ∈ G. For the dihedral group
D2n (n ≥ 3), Rotmaler [16] proved that

Aut (D2n) = {
σλ,k | λ ∈ Z

∗
n, k ∈ Zn

}
,

where σλ,k(ai) = aλi and σλ,k(baj) = baλj+k for ai, baj ∈ D2n. From the above arguments
and Theorem 3.4, we obtain

Corollary 3.5: Let S = S1 ∪ S2 ⊆ D2n\{1} be such that S = S−1 and 〈S〉 = D2n, where
S1 ⊆ 〈a〉 and S2 ⊆ b〈a〉, and let � = X(D2n, S) be a Cayley graph over D2n. If S1 ⊆
B(〈a〉), |S2| = n − 1 and D is a set of positive integers, then �D = X(D2n, S(D)) is an integral
Cayley graph over D2n.

Proof: Since |S2| = n − 1, we may assume that S2 = b〈a〉 \ {baj} for some 0 ≤ j ≤ n − 1.
If S2 = b〈a〉 \ {b}, then bS2 = 〈a〉 \ {1} ∈ B(〈a〉), and S1 ⊆ B(〈a〉). By Theorem 3.4, the

distance power �D is an integral Cayley graph over D2n.
If S2 = b〈a〉 \ {baj}, for some 1 ≤ j ≤ n − 1 and n ≥ 3, then σ1,j ∈ Aut(D2n) such that

σ1,j(ai) = ai and σ1,j(b) = baj. Moreover, σ1,j(S1) = S1 and σ1,j(b〈a〉 \ {b}) = b〈a〉 \ {baj}.
Therefore, we have � = X(D2n, S1 ∪ (b〈a〉 \ {baj})) ∼= X(D2n, S1 ∪ (b〈a〉 \ {b})). Thus �D

is an integral Cayley graph over D2n.
This completes the proof. �

Noticing that � = X(D2n, S1 ∪ {b}) ∼= �′ = X(D2n, S1 ∪ {bai}) for any 1 ≤ i ≤ n − 1,
we obtain the following result similar to Corollary 3.5.

Corollary 3.6: Let S = S1 ∪ S2 ⊆ D2n\{1} be such that S = S−1 and 〈S〉 = D2n, where
S1 ⊆ 〈a〉 and S2 ⊆ b〈a〉, and let � = X(D2n, S) be a Cayley graph over D2n. If S1 ⊆
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B(〈a〉), |S2| = 1 and D is a set of positive integers, then �D = X(D2n, S(D)) is an integral
Cayley graph over D2n.

From Theorem 3.4 (for S1, bS2 ⊆ B(〈a〉) ), Corollary 3.6 (for S1 ⊆ B(〈a〉), |S2| = 1) and
Corollary 3.5 (S1 ⊆ B(〈a〉), |S2| = n − 1), we get the following corollary for the dihedral
group D2p, where p is an odd prime.

Corollary 3.7: For an odd prime p, let D2p = 〈a, b | ap = b2 = 1, bab = a−1〉 and S =
S1 ∪ S2 be such that 1 /∈ S, S = S−1, where S1 ⊆ 〈a〉, S2 ⊆ b〈a〉. Let D be a set of posi-
tive integers. Let � = X(D2p, S) be a Cayley graph over D2p. If S1 = ∅ or 〈a〉 \ {1} and
S2 = b〈a〉 \ {baj}, b〈a〉 or {baj}where 0 ≤ j ≤ p − 1, then �D = X(D2p, S(D)) is an integral
Cayley graph over D2p.

Thus, from Lemma 3.3 and Corollary 3.7, we obtain a sufficient condition for the
integrality of the Cayley graph �D = X(D2p, S(D)).

Theorem3.8: For an odd prime p, let D2p = 〈a, b | ap = b2 = 1, bab = a−1〉 and S = S1 ∪
S2 be such that 1 /∈ S, S = S−1, where S1 ⊆ 〈a〉, S2 ⊆ b〈a〉. If the Cayley graph X(D2p, S) is
integral, and if D is a set of positive integers, then �D = X(D2p, S(D)) is an integral Cayley
graph over D2p for certain S(D).

We would like to point out that the necessity of Theorem 3.8 is not true. For example,
we take the set D = {d}, where d is a number that is not the distance of any two vertices
in �, and let S = {a, a−1} ∪ {b}. Then �D = X(D2p, S(D)) with S(D) = ∅ is integral, but
� = X(D2p, S) is not integral from Lemma 3.3.

4. Distance powers of integral Cayley graphs over dicyclic group

In this section, we consider the dicyclic group, which is the metacyclic group of order 4n
for odd n [17]. The presentation for the dicyclic group T4n (n ≥ 3) is given by

T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉.

This group has order 4n, and

T4n = {ak, bak | 0 ≤ k ≤ 2n − 1}.

In [18], we gave several criteria for the integral Cayley graph over the dicyclic group T4n.

Lemma 4.1 ([18]): Let T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉 be the dicyclic group,
and let S = H1 ∪ H2 ⊆ T4n\{1} be such that S = S−1, where H1 ⊆ 〈a〉 and H2 ⊆ b〈a〉. If
H1, bH2 ∈ B(〈a〉), then X(T4n, S) is integral.

Lemma 4.2 ([18]): For an odd prime p, let T4p = 〈a, b|a2p = 1, ap = b2, b−1ab = a−1〉
and S = H1 ∪ H2 be such that S = S−1, where H1 ⊆ 〈a〉 and H2 ⊆ b〈a〉. Then X(T4p, S)
is integral if and only if H1 ∈ B(〈a〉) which has four atoms {{1}, [a], [a2], [ap]} and H2 =
b〈a〉\{bak, bap+k}, b〈a〉 or {bak, bap+k}, where 0 ≤ k ≤ p − 1.
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The automorphism group of T4n is very important for our study.

Lemma 4.3: Let T4n = 〈a, b | a2n = 1, an = b2, b−1ab = a−1〉 be the dicyclic group. Then
Aut(T4n) = {αg,h | g ∈ Z∗

2n, h ∈ Z2n}, where αg,h(ak) = akg ,αg,h(bak) = bakg+h.

Proof: Note that α ∈ Aut(T4n) if and only if o(α(a)) = o(a) = 2n, α(a)n = α(b)2, and
α(b)−1α(a)α(b) = α(a)−1. Therefore,

α(a) ∈ {ak | 0 ≤ k ≤ 2n − 1, and (k, 2n) = 1},
α(b) ∈ {bak | 0 ≤ k ≤ 2n − 1}.

Hence, |Aut(T4n)| ≤ ϕ(2n)× 2n, where ϕ is the Euler’s function. We now define the
function

αg,h : T4n �→ T4n

such that

αg,h(ak) = akg , αg,h(bak) = bakg+h,

where g ∈ Z∗
2n and h ∈ Z2n. Then αg,h is a bijection, and the homomorphism is as follows.

αg,h(ak1ak2) = αg,h(ak1+k2) = a(k1+k2)g = ak1g+k2g = ak1gak2g = αg,h(ak1)αg,h(ak2),

αg,h(bak1bak2) = αg,h(a−k1+k2+n) = a(−k1+k2+n)g

= a−k1g+k2g+n (because (g, 2n) = 1, then ng ≡ n (mod 2n))

= a−(k1g+h)+(k2g+h)+n = bak1g+hbak2g+h = αg,h(bak1)αg,h(bak2),

αg,h(ak1bak2) = αg,h(bak2−k1) = ba(k2−k1)g+h = ak1gbak2g+h = αg,h(ak1)αg,h(bak2),

αg,h(bak1ak2) = αg,h(bak1+k2) = ba(k1+k2)g+h = bak1g+hak2g = αg,h(bak1)αg,h(ak2).

Moreover, using these equations above, we have

αg,h(a)2n = αg,h(a2n) = αg,h(1) = 1,

αg,h(a)n = αg,h(an) = αg,h(b2) = αg,h(b)2,

and

αg,h(a)αg,h(b)αg,h(a) = αg,h(aba) = αg,h(b),

i.e.

αg,h(b)−1αg,h(a)αg,h(b) = αg,h(a)−1.

Therefore, αg,h ∈ Aut(T4n). Since |Aut(T4n)| ≤ ϕ(2n)× 2n and |{αg,h | g ∈ Z∗
2n, h ∈

Z2n}| = ϕ(2n)× 2n, we have Aut(T4n) = {αg,h | g ∈ Z∗
2n, h ∈ Z2n}.

This completes the proof. �

Now, along the way of Section 3, we can obtain similar conclusions about the distance
powers of integral Cayley graphs over the dicyclic group T4n.
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Theorem 4.4: Let S = H1 ∪ H2 ⊆ T4n\{1} be such that S = S−1 and 〈S〉 = T4n, where
H1 ⊆ 〈a〉 and H2 ⊆ b〈a〉. Let � = X(T4n, S) be the Cayley graph over T4n. If H1, bH2 ⊆
B(〈a〉) and D is a set of positive integers, then the distance power �D = X(T4n, S(D)) is an
integral Cayley graph over T4n for some S(D) ⊆ T4n.

Proof: By Lemma 4.1, similar to the proof of Theorem 3.4. �

Corollary 4.5: Let S = H1 ∪ H2 ⊆ T4n\{1} be such that S = S−1 and 〈S〉 = T4n, where
H1 ⊆ 〈a〉 and H2 ⊆ b〈a〉, and let � = X(T4n, S) be a Cayley graph over T4n. If H1 ⊆
B(〈a〉), |H2| = 2 and D is a set of positive integers, then �D = X(T4n, S(D)) is an integral
Cayley graph over T4n.

Proof: Since H−1
2 = H2 and |H2| = 2, we may assume that H2 = {baj, (baj)−1 = ban+j}

for some 0 ≤ j ≤ n − 1.
If H2 = {b, ban}, then bH2 = {1, an} ∈ B(〈a〉), and H1 ⊆ B(〈a〉). By Theorem 4.4, the

distance power �D is an integral Cayley graph over T4n.
If H2 = {baj, (baj)−1 = ban+j} for some 1 ≤ j ≤ n − 1. Since 1 ∈ Z∗

2n and j ∈ Z2n,
we have α1,j ∈ Aut(T4n). Then α1,j(ak) = ak, α1,j(b) = baj and α1,j(b) = ban+j. More-
over, α1,j(H1) = H1. Therefore, we have � = X(T4n,H1 ∪ {baj, ban+j}) ∼= X(T4n,H1 ∪
{b, ban}). Thus �D is an integral Cayley graph over T4n.

This completes the proof. �

Similar as Corollary 4.5, we obtain

Corollary 4.6: Let S = H1 ∪ H2 ⊆ Dn\{1} be such that S = S−1 and 〈S〉 = T4n, where
H1 ⊆ 〈a〉 andH2 ⊆ b〈a〉, and let� = X(T4n, S) be a Cayley graph over T4n. If H1 ⊆ B(〈a〉),
|H2| = 2n − 2 andD is a set of positive integers, then�D = X(T4n, S(D)) is an integral Cayley
graph over T4n.

Thus, from Lemma 4.2 and Corollaries 4.5 and 4.6, we obtain the following theorem for
dicyclic group T4p, where p is an odd prime.

Theorem 4.7: For an odd prime p, let T4p = 〈a, b | a2p = 1, ap = b2, b−1ab = a−1〉 and
S = H1 ∪ H2 such that 1 /∈ S, S = S−1, where H1 ⊆ 〈a〉, H2 ⊆ b〈a〉. If the Cayley graph
X(T4p, S) is integral, and if D be a set of positive integers, then �D = X(T4p, S(D)) is an
integral Cayley graph over T4p for certain S(D).
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