
Linear Algebra and its Applications 597 (2020) 33–45
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A bound on the spectral radius of graphs in terms 

of their Zagreb indices

Lihua Feng a, Lu Lu a, Tamás Réti b, Dragan Stevanović a,c,∗

a School of Mathematics and Statistics, Central South University, New Campus, 
Changsha, Hunan, 410083, PR China
b Obuda University, Népszínház str. 8, Budapest H-1081, Hungary
c Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 
36, 11000 Belgrade, Serbia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 November 2019
Accepted 15 March 2020
Available online 20 March 2020
Submitted by R. Brualdi

MSC:
05C50

Keywords:
Main eigenvalues
Zagreb indices
Number of walks
Rayleigh quotient

The first and the second Zagreb index of a graph, usually 
defined as the sum of the squares of degrees over all vertices 
and the sum of the products of degrees of edge endvertices 
over all edges, respectively, are tightly related to the numbers 
of walks of length two and three in the graph. We provide here 
a lower bound on the spectral radius of adjacency matrix A of 
graph in terms of its Zagreb indices, based on the properties 
of the least square approximation of the vector A2j with the 
vectors Aj and j, where j is the all-one vector. The bound is 
sharp for all graphs with two main eigenvalues, surpassing the 
range of sharpness of other bounds among connected graphs.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author at: Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 
36, 11000 Belgrade, Serbia.

E-mail addresses: fenglh@163.com (L. Feng), lulugdmath@163.com (L. Lu), 
reti.tamas@bgk.uni-obuda.hu (T. Réti), dragan_stevanovic@mi.sanu.ac.rs (D. Stevanović).
https://doi.org/10.1016/j.laa.2020.03.021
0024-3795/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2020.03.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2020.03.021&domain=pdf
mailto:fenglh@163.com
mailto:lulugdmath@163.com
mailto:reti.tamas@bgk.uni-obuda.hu
mailto:dragan_stevanovic@mi.sanu.ac.rs
https://doi.org/10.1016/j.laa.2020.03.021


34 L. Feng et al. / Linear Algebra and its Applications 597 (2020) 33–45
1. Introduction

Let G = (V, E) be a simple connected graph with n = |V | vertices and m = |E| edges. 
The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its (0, 1)-adjacency matrix A are also said to be 
the eigenvalues of G. Let x1, x2, . . . , xn form an orthonormal basis of eigenvectors of A
such that xi is the eigenvector of λi for i = 1, . . . , n. The spectral decomposition [26, 
p. 6] states that

A =
n∑

i=1
λixix

�
i . (1)

By Perron-Frobenius theorem [26, p. 8], the spectral radius λ1 is a single eigenvalue with 
λ1 ≥ |λi|, with λ1 = |λn| if and only if G is bipartite, and x1 can be chosen to have all 
its components positive.

Further, let j be the all-one vector indexed by V and let

j =
n∑

i=1
cixi

be its representation in the eigenvector basis. A walk W of length k between the vertices 
u and v in a simple graph G is a sequence of its vertices W : u = w0, w1, . . . , wk = v

such that wi is adjacent to wi+1 for i = 0, . . . , k−1. By a folklore result in graph theory, 
the number of all walks of length k between u and v is equal to (Ak)u,v. Hence by the 
orthonormality of eigenvectors x1, x2, . . . , xn, the number of all walks of length k in G
is equal to

j�Akj =
n∑

i=1
λk
i (j�xi)(x�

i j) =
n∑

i=1
c2iλ

k
i .

If G is not bipartite, then λ1 > |λi| for i = 2, . . . , n, so that λ1 = limk→∞
k
√

j�Akj. If 
G is bipartite, then λn = −λ1 and the walks of odd length do not exist, but still

λ1 = lim
k→∞

2k
√

j�A2kj. (2)

For the vertex u of G let du denote the number of vertices adjacent to u in G. The 
first Zagreb index M1 and the second Zagreb index M2 are defined as

M1 =
∑
u∈V

d2
u and M2 =

∑
uv∈E

dudv.

These indices were introduced by Gutman and Trinajstić [13] in 1972 within the study 
of the dependence of total π-electron energy on molecular structure, and were shown 
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to measure branching of the molecular carbon-atom skeleton [14] in 1975. Since for the 
vector d of vertex degrees holds

d = (du)u∈V = Aj,

we have that

M1 =
∑
u∈V

d2
u = d�d = j�A2j, (3)

M2 =
∑
uv∈E

dudv = 1
2d

�Ad = 1
2j

�A3j, (4)

so that M1 and M2 actually count all walks of length two and a half of all walks of 
length three in G. Taking into account (2), it does not surprise that several results from 
the literature, mostly in the form of bounds, relate the spectral radius of a graph to the 
Zagreb indices and other numbers of short walks.

To state these results, we have to introduce a few further definitions. For a vertex u

of G, let the 2-degree d2,u =
∑

{v : uv∈E} dv be the sum of degrees of the neighbors of u
in G, and let d3,u =

∑
{v : uv∈E} d2,v be the sum of 2-degrees of the neighbors of u in G. 

Therefore, (d2,u)u∈V = A2j and (d3,u)u∈V = A3j. A graph is regular if its vertices have 
a constant degree, i.e., if Aj = rj for some integer r. A graph is bipartite semiregular if 
vertices in the same bipartition have a constant degree. Favaron, Mahéo and Saclé [11]
proved the following lower bound, while Berman and Zhang [2] proved the upper bound:

1
m

∑
uv∈E

√
dudv ≤ λ1 ≤ max

uv∈E

√
dudv. (5)

Favaron, Mahéo and Saclé [11] proved the following bounds as well:

min
u∈V

(A2j)u
(Aj)u

= min
u∈V

d2,u

du
≤ λ1 ≤ max

u∈V

d2,u

du
= max

u∈V

(A2j)u
(Aj)u

; (6)

λ1 ≤ max
u∈V

√
d2,u = max

u∈V

√
(A2j)u; (7)√

j�A2j

j�j
=

√
M1

n
≤ λ1. (8)

Zhou [30] proved the bound

j�A3j

j�A2j
= 2M2

M1
≤ λ1. (9)

Bound (7) has been proved independently by Cao [4], while bound (8) has been proved 
independently both by Hofmeister [17] and by Zhou [29]. Note that in each of the bounds 
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(5), (7) and (8) equality holds if and only if the graph is regular or bipartite semiregular, 
while equality holds in (6) and (9) if and only if Aj is an eigenvector of A corresponding 
to λ1 (in which case graph is also called pseudo-regular).

Yu, Lu and Tian [28] proved the bound
√

j�A4j

j�A2j
=

√∑
u∈V d2

2,u

M1
≤ λ1 (10)

and Hong and Zhang [18] have further proved the bound
√

j�A6j

j�A4j
=

√∑
u∈V d2

3,u∑
u∈V d2

2,u
≤ λ1. (11)

In either of these bounds, equality holds if and only if the ratios of the constituent 
summands (d2,u/du in the first case and d3,u/d2,u in the second case) have a constant 
value for all vertices of the graph or the graph is bipartite and these ratios have a constant 
value in each bipartition.

On the other hand, Abdo et al. [1] have shown that

√
M2

m
=

√
j�A3j

j�Aj
(12)

is a good approximation of the spectral radius λ1, sharp for a large set of graphs, although 
it is neither a lower nor an upper bound for it.

Our goal here is to prove a new lower bound on the spectral radius of a graph in terms 
of its Zagreb indices and numbers of vertices and edges, that is sharp for a rather large 
set of graphs—all graphs with two main eigenvalues. While the bound will at the first 
sight appear to have a rather complicated expression, it will be clear from its proof that 
this expression follows naturally from the least squares approximation of the vector A2j

by the vectors Aj and j, where j is the all-one vector.
Before we state the main result, let us also briefly introduce main eigenvalues of 

graphs. An eigenvalue λ of A is called the main eigenvalue of G if its eigenspace is not 
orthogonal to the all-one vector j [7]. The spectral radius λ1 is always the main eigenvalue 
of a connected graph G as its eigenvector x1 is strictly positive, and Rowlinson [24, 
Proposition 1.4] showed that regular graphs are the only graphs with exactly one main 
eigenvalue. Hagos [15] gave the following characterization of the number of the main 
eigenvalues of a graph.

Theorem 1 ([15]). If k is the maximal integer such that j, Aj, . . . , Ak−1j are linearly 
independent, then G has exactly k main eigenvalues.

While Cvetković [6] posed the problem of characterization of graphs with a given num-
ber of main eigenvalues more than 40 years ago, study of the first nontrivial case—graphs 
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with two main eigenvalues—became an active field of research only after Theorem 1 ap-
peared in 2002. For k = 2 it states that a graph has exactly two main eigenvalues if it is 
not regular and there exist real values α and β such that

A2j = αAj + βj. (13)

Many examples of graphs with two main eigenvalues appeared in literature since then. 
Rowlinson [24] pinpointed cones over regular graphs and strongly regular graphs with 
one vertex deleted as such examples. General constructions of graphs with two main 
eigenvalues were described by Hayat et al. [16], Chen and Huang [5], and Huang et al. [22], 
whose construction may also produce graphs with an arbitrary fixed number of main 
eigenvalues. Tang and Hou [27] determined integral graphs with spectral radius 3 and 
two main eigenvalues, while a number of authors [10,19–21,25] managed to characterize 
unicyclic, bicyclic and tricyclic graphs with two main eigenvalues.

Our main result is as follows.

Theorem 2. Let G be a nonregular simple graph with n vertices, m edges and the first 
and the second Zagreb indices M1 and M2, respectively, and let

α = 2(nM2 −mM1)
nM1 − 4m2 and β = M2

1 − 4mM2

nM1 − 4m2 . (14)

The spectral radius λ1 of G then satisfies

α +
√
α2 + 4β
2 ≤ λ1, (15)

with equality if and only if G has exactly two main eigenvalues.

Note that the condition that G is not regular in Theorem 2 is not too restrictive, as 
if G is regular with all of its vertices having degree r, which is easy to check, then also 
λ1 = r.

The rest of the paper is organised as follows. Proof of the main result is given in 
Section 2. The approach used in the proof, which is based on the least squares approxi-
mation of Akj via j, . . . , Ak−1j for k = 2, is further discussed in Section 3, in particular 
for k = 1 and k = 3. Statistical comparison of the lower bound (15) to previously men-
tioned bounds (5)–(12) on several sets of connected graphs and trees is presented in 
Section 4, showing that the new bound is comparable to the best among these bounds, 
at the same time being sharp for larger sets of connected graphs.

2. Proof of Theorem 2

Let us recall that the least squares approximation of the vector A2j with a linear 
combination αAj + βj of the vectors Aj and j is performed by projecting A2j onto the 
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Fig. 1. Illustration of (16).

space S = span{Aj, j}, as this minimizes the norm of the difference between A2j and its 
approximation αAj + βj (see Fig. 1). Hence we have

A2j = αAj + βj + z, where z ⊥ j and z ⊥ Aj. (16)

Let us now determine α and β from (16). From the conditions z ⊥ j and z ⊥ Aj we 
get the system:

0 = j�z = j�A2j − αj�Aj − βj�j,

0 = (Aj)�z = j�A�A2j − αj�A�Aj − βj�A�j.

The adjacency matrix A is symmetric as G is an undirected graph, so that we actually 
have

αj�Aj + βj�j = j�A2j,

αj�A2j + βj�Aj = j�A3j,

whose solution by the Cramer’s rule is given by

α =

∣∣∣∣j�A2j j�j
j�A3j j�Aj

∣∣∣∣∣∣∣∣ j�Aj j�j
j�A2j j�Aj

∣∣∣∣
and β =

∣∣∣∣ j�Aj j�A2j
j�A2j j�A3j

∣∣∣∣∣∣∣∣ j�Aj j�j
j�A2j j�Aj

∣∣∣∣
Recalling that

j�j = n, j�Aj = 2m, j�A2j = M1 and j�A3j = 2M2,

we obtain

α = 2(nM2 −mM1)
nM1 − 4m2 and β = M2

1 − 4mM2

nM1 − 4m2 . (17)

As already shown in [23, Theorem 2.1], the Cauchy-Schwarz inequality applied to the 
vectors j and d = Aj yields
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nM1 =
∑
u∈V

12
∑
u∈V

d2
u ≥

(∑
u∈V

1 · du

)2

= 4m2,

with equality if and only if d = rj some integer r, namely if and only if G is a regular 
graph. As G is assumed not to be regular, this means that nM1 − 4m2 > 0, so that α
and β are well-defined in (17).

Next, we would like to find a pair (μ, x) of a pseudoeigenvalue μ and a pseudoeigen-
vector x of A in S having the form

x = Aj + γj

for some real γ such that

Ax = μx + z. (18)

Using (16) this implies

Ax = A2j + γAj = (α + γ)Aj + βj + z = μ(Aj + γj) + z.

Since G is not regular, it has at least two main eigenvalues, so that by Theorem 1 the 
vectors Aj and j are linearly independent. The last equality above then implies

α + γ = μ, (19)

β = μγ. (20)

Multiplying (19) by μ and replacing μγ from (20) yields the quadratic equation

αμ + β = μ2,

for which we will choose the solution with the plus sign:

μ = α +
√
α2 + 4β
2 , (21)

so that

γ = β

μ
= 2β

α +
√

α2 + 4β
.

Now we can finally apply the Rayleigh quotient to the vector x to deduce the lower 
bound for the spectral radius λ1 of A:

λ1 ≥ x�Ax = x�(μx + z) = μ + x�z = μ, (22)

x�x x�x x�x
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since

x�z = (Aj)�z + γj�z = 0

as z ⊥ j and z ⊥ Aj. Combining (22), (21) and (17) now proves the lower bound in 
Theorem 2. Equality holds in (22) if and only if x is an eigenvector of A, which by (18)
holds if and only if z = 0, which further by (16) holds if and only if A2j is linearly 
dependent on Aj and j, and which by Theorem 1 holds if and only if G has exactly two 
main eigenvalues. �
3. Discussion of the proof approach

The approach used in the proof of Theorem 2: finding the coefficients of the projec-
tion of the vector Akj to the space S spanned by the vectors j, . . . , Ak−1j, using these 
coefficients to determine a pseudoeigenvalue μ and a pseudoeigenvector x of A satisfying 
Ax = μx + z, where z is the difference between Akj and its projection on S, and then 
applying the Rayleigh quotient to show that λ1 ≥ μ, may be also applied to values of k
different from two.

The case k = 1 is trivial, as the projection step and the pseudoeigenvalue equality step 
overlap, both requiring Aj = μj + z, with j forced to being a pseudoeigenvector. The 
condition z ⊥ j yields 0 = j�z = j�(Aj − μj) = 2m − μn, i.e., μ = 2m

n , which recreates 
a classical lower bound λ1 ≥ 2m

n with equality if and only if the graph is regular with j
as its true eigenvector.

We will now apply this approach to the case k = 3 as a more illustrative example. 
To simplify notation, let wi = j�Aij denote the number of all walks of length i in the 
graph. Setting the projection equality

A3j = αA2j + βAj + γj + z,

the condition z ⊥ {j, Aj, A2j} yields the system:

αw2 + βw1 + γw0 = w3 (from j�z = 0),

αw3 + βw2 + γw1 = w4 (from (Aj)�z = 0),

αw4 + βw3 + γw2 = w5 (from (A2j)�z = 0),

whose solution is given by

α =

∣∣∣∣∣
w3 w1 w0
w4 w2 w1
w5 w3 w2

∣∣∣∣∣∣∣∣∣∣
w2 w1 w0
w3 w2 w1

∣∣∣∣∣
, β =

∣∣∣∣∣
w2 w3 w0
w3 w4 w1
w4 w5 w2

∣∣∣∣∣∣∣∣∣∣
w2 w1 w0
w3 w2 w1

∣∣∣∣∣
, γ =

∣∣∣∣∣
w2 w1 w3
w3 w2 w4
w4 w3 w5

∣∣∣∣∣∣∣∣∣∣
w2 w1 w0
w3 w2 w1

∣∣∣∣∣
.

w4 w3 w2 w4 w3 w2 w4 w3 w2
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Note that this solution is unique if we assume that G has at least three main eigenvalues, 
so that the vectors j, Aj and A2j are linearly independent.

Next, we set up the pseudoeigenvalue equality

Ax = μx + z (23)

assuming x to have the form x = A2j+δAj+εj. Replacing x in (23) yields the equation

Ax = A3j + δA2j + εAj = (α + δ)A2j + (β + ε)Aj + γj + z = μ(A2j + δAj + εj) + z.

Since A2j, Aj and j are assumed to be linearly independent, the above equation leads 
to the system:

α + δ = μ,

β + ε = μδ,

γ = με.

Multiplying the second equation by μ, replacing με in it by γ, and then multiplying the 
first equation by μ2, and replacing μ2δ in it by βμ + γ yields the cubic equation with μ
as the only unknown:

αμ2 + βμ + γ = μ3.

Numerical algorithms, such as MPSolve [3] or Eigensolve [12], may then be used to find 
the largest real solution of this equation, which will be a lower bound for the spectral 
radius λ1 by the Rayleigh quotient. However, it is questionable whether this would yield 
any advantage over applying the Lanczos algorithm directly to A to estimate its spectral 
radius. The apparent conclusion that this discussion imposes is that the case k ≥ 3 ceases 
to produce nice closed-form expressions compared to the case k = 2 that was used to 
obtain Theorem 2.

4. Statistical comparison

We show the results of simple statistical comparison of the estimates in (5)–(12) and 
the new bound (15) in Fig. 3. We calculated the root-mean-square deviation between 
the values of the spectral radius λ1 and these estimates for the sets of connected graphs 
from four to ten vertices (a total of 11,989,760 graphs; the upper left diagram in Fig. 3) 
and the sets of trees from 10 to 20 vertices (a total of 1,345,929 trees; the lower left 
diagram), as well as the ratio of the numbers of graphs in these sets for which these 
estimates are sharp (the upper right diagram for the sets of connected graphs and the 
lower right diagram for the sets of trees). Here the value of an estimate was deemed to 
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be sharp if it was within 10−8 of the spectral radius of adjacency matrix, as calculated 
by the Lanczos algorithm.

Diagrams clearly indicate that the root-mean-square deviation of an estimate is related 
to the highest power of A appearing in its definition: the best performing estimate is (11), 
combining the sixth and the fourth powers of A, followed by (10) which combines the 
fourth and the second powers of A. The estimates (15), from our main theorem, and 
(12), which both depend on the third power of A, behave rather similarly, especially 
within the sets of connected graphs, and substantially better than the estimate (9), 
which combines the third and the second power of A. Reflecting on this, one should 
certainly expect even smaller root-mean-square deviation from the estimates employing 
even higher powers of A, such as, e.g.,

λ1 ≥

√
j�A8j

j�A6j
.

However, such estimates lose their methodological benefit, as it takes almost the same 
effort to calculate them as it takes to call an implementation of the Lanczos algorithm in 
any of the modern software matrix tools and libraries. Hence one should not aim higher 
than the third power of A, which is still recognizable in the literature disguised as the 
second Zagreb index, when looking for new estimates for the spectral radius of A.

While the root-mean-square deviations tend to change at a constant rate, the ratios of 
the numbers of graphs for which these estimates are sharp apparently drop exponentially 
with increase in the number of vertices. From the upper right diagram of Fig. 3, it is 
evident that the bound (15) from Theorem 2 is superior to other estimates in the numbers 
of connected graphs for which it is sharp. For example, among connected graphs on 
ten vertices, the bound (15) is sharp for 1,117 graphs, followed by the estimate (12)
which is sharp for 369 graphs, with the remaining estimates being sharp for between 173 
and 238 such graphs. The situation with sharpness ratios changes significantly when we 
switch to trees, as the conditions for equality in these estimates are usually expressed 
in various terms of regularity, which are much harder satisfied for trees (for example, 
the bounds in (6) and (9) are never sharp for trees, and the star is usually the only 
tree satisfying equality in other estimates). The exception here is the estimate (12), 
which is, let us repeat, neither a lower nor an upper bound for the spectral radius. This 
estimate is sharp for semiharmonic graphs [9] that satisfy A3j = λ2

1Aj, but also for 
certain non-semiharmonic graphs [1]. Semiharmonic graphs can be found easily among 
trees: according to [8], a tree is semiharmonic if and only if for some a, b ∈ N it contains 
a central vertex v of degree a, every neighbor w of v has degree b and every neighbor of w
distinct from v is a leaf. However, computational results show that the estimate (12) is 
sharp for non-semiharmonic trees as well, two examples of which are shown in Fig. 2.
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Fig. 2. Two non-semiharmonic trees on ten vertices for which λ1 =
√
M2/m holds. The left tree is one of 

the Smith graphs with λ1 = 2 and M2 = 36, while the right tree has λ1 =
√

5 and M2 = 45.

Fig. 3. Diagrams of simple statistical analysis of various estimates for the spectral radius of graphs: upper 
left) oot-mean-square deviation between the spectral radius and the estimates from (5)–(12) and (15) for 
the sets of connected graphs from four to ten vertices; upper right) ratio of the number of connected graphs 
for which these estimates are sharp; lower left) root-mean-square deviation between the spectral radius and 
the estimates for the sets of trees from 10 to 20 vertices; lower right) ratio of the number of trees for which 
the estimates are sharp. Note that the upper right and the lower right diagram have a number of lines 
overlapping entirely, as the respective estimates are sharp for exactly the same sets of graphs, so that only 
one of the overlapping lines is visible. In particular, the line for maxu∈V

√
d2,u represents the sharpness of 

all estimates in (5), (7) and (8), the line for maxu∈V d2,u/du represents also the sharpness of lower bounds 
in (6) and (9, and the line for 

√∑
u∈V d2

3,u/
∑

u∈V d2
2,u represents also the sharpness of 

√∑
u∈V d2

2,u/M1. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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