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a b s t r a c t

For a connected graph of order n and an integer k ≥ 1, denoted by Sk(D(G)) =

λ1(D(G)) + · · · + λk(D(G)) the sum of the k largest distance eigenvalues of G. In this
note, by using a basic technique, we show that λ1(D(G))+ λ2(D(G)) ≥ 2n− 4 when G is
bipartite. It leads to that Sk(D(G)) ≥ 2n − 2k when n is large enough with respect to k,
which completely settles a problem posed by Lin (2019).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n and |E(G)| = m.
The distance between vertices vi and vj, denoted by dG(vi, vj) (or d(vi, vj) for short), is the length of a shortest path from
i to vj in G. The distance matrix of G, denoted by D(G)(or simple by D), is the real symmetric matrix with (i, j)-entry being
G(vi, vj). The distance eigenvalues of G, are denoted by λ1(D(G)) ≥ λ2(D(G)) ≥ · · · ≥ λn(D(G)). For more details about the
istance matrix we refer the reader to [1].
For a number 2 ≤ k ≤ n − 1, denote by Sk(D(G)) = λ1(D(G)) + λ2(D(G)) + · · · + λk(D(G)). In 2019, Lin [3] determined

he sharp lower bounds of Sk(D(G)) when G is a connected graph and a tree, respectively, and left the following problem.

roblem 1 ([3, Problem 3]). Let G be a connected bipartite graph of order n. For an integer k ≥ 2 and sufficiently large
with respect to k, does there always hold Sk(D(G)) ≥ 2n − 2k, where the equality holds if and only if G = Kr,n−r for
≤ r ≤ n − 1?

Subsequently, Lin and Zhang [4] show that Sk(D(G)) ≥ 2n − 2k if G is a C4-free bipartite graph or a bipartite distance
egular graph. This result partially solved the above problem. In this short note, we settle this problem by proving
1(D(G)) + λ2(D(G)) ≥ 2n − 4 when G is a connected bipartite graph on n vertices.

. Lemmas and results

Firstly, we will list some preliminaries and prove some lemmas. The following lemma is our main tool, which helps
s obtain the lower bound of the sum of eigenvalues.
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emma 1 ([2, Theorem 1]). Let M be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λ1 + λ2 + · · · + λr = sup{uT
1Mu1 + uT

2Mu2 + · · · + uT
r Mur}(r = 1, 2, . . . , n),

here the supremum is taken over all orthonormal vectors u1, u2, . . . , ur .

Now we are in the position to present our main result.

heorem 1. Let G be a connected bipartite graph of order n. Then S2(D(G)) ≥ 2n − 4, where the equality holds if and only if
= Kr,n−r for 1 ≤ r ≤ n − 1.

roof. By simple calculations, we have λ1(D(Kr,n−r )) = n − 2 +
√
n2 + 3r2 − 3nr and λ2(D(Kr,n−r )) = n − 2 −

n2 + 3r2 − 3nr for 1 ≤ r ≤ n − 1. Therefore, S2(D(Kr,n−r )) = 2n − 4.
Let G = G[V1, V2] be a connected bipartite graph with |V1| = r and |V2| = n − r but G ̸= Kr,n−r . Let

u1 =
1

√
r
(1, . . . , 1  

r

, 0, . . . , 0  
n−r

)T

and

u2 =
1

√
n − r

(0, . . . , 0  
r

, −1, . . . ,−1  
n−r

)T .

It is easy to see that uT
1u1 = uT

2u2 = 1 and uT
1u2 = 0, that is, u1 and u2 are orthonormal vectors. From Lemma 1, we have

λ1(D(G)) + λ2(D(G)) ≥ uT
1D(G)u1 + uT

2D(G)u2
=

∑
vi,vj

d(vi, vj)u1(i)u1(j) +
∑

vi,vj
d(vi, vj)u2(i)u2(j)

=
∑

vi,vj∈V1
d(vi, vj) (u1(i)u1(j) + u2(i)u2(j)) +

∑
vi,vj∈V2

d(vi, vj) (u1(i)u1(j) + u2(i)u2(j))
+ 2

∑
vi∈V1,vj∈V2

d(vi, vj) (u1(i)u1(j) + u2(i)u2(j))
=

∑
vi,vj∈V1

d(vi, vj) 1r +
∑

vi,vj∈V2
d(vi, vj) 1

n−r

> 2r(r − 1) 1r + 2(n − r)(n − r − 1) 1
n−r

= 2n − 4,

where the second to last inequality holds because G is not complete bipartite and thus there exist two vertices vs, vt in
a same part such that d(vs, vt ) > 2 and all other pairs (x, y) in a same part satisfy d(x, y) ≥ 2.

The proof is completed. □

Lemma 2 ([3, Lemma 3]). Let G be a connected graph of order n. For any integer k ≥ 2, if n is sufficiently large with respect
to k then λk(D(G)) ≥ −2.

Theorem 2. Let G be a connected bipartite graph of order n. For an integer k ≥ 2 and sufficiently large n with respect to k,
we have Sk(D(G)) ≥ 2n − 2k, where the equality holds if and only if G = kr,n−r for 1 ≤ r ≤ n − 1.

Proof. It is known that Sk(D(Kr,n−r )) = 2n − 2k for k ≥ 2. Let G = G[V1, V2] be a connected bipartite with |V1| = r and
|V2| = n− r but G ̸= Kr,n−r . Then, by Theorem 1 and Lemma 2, we have λ1(D(G))+λ2(D(G)) > 2n− 4 and λk(D(G)) ≥ −2
for k ≥ 3. It follows that

Sk(D(G)) = λ1(D(G)) + λ2(D(G)) + λ3(D(G)) + · · · + λk(D(G))
> 2n − 4 − 2(k − 2) = 2n − 2k.

The proof is completed. □

From Theorem 2, we get Lin’s result immediately.

Corollary 1 ([3]). Let k ≥ 2 be an integer and n a sufficiently large number with respect to k. Let G be a tree of order n. Then
Sk(D(G)) ≥ 2n − 2k where the equality holds if and only if G = K1,n−1.
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