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Abstract In this paper, we give a necessary and sufficient condition for the integrality
of Cayley graphs over the dihedral group Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩.
Moreover,we alsoobtain some simple sufficient conditions for the integrality ofCayley
graphs over Dn in terms of the Boolean algebra of ⟨a⟩, from which we find infinite
classes of integral Cayley graphs over Dn . In particular, we completely determine all
integral Cayley graphs over the dihedral group Dp for a prime p.
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1 Introduction

A graph X is said to be integral if all eigenvalues of the adjacency matrix of X are inte-
gers. The property was first defined by Harary and Schwenk [12], who suggested the
problem of classifying integral graphs. This problem initiated a significant investiga-
tion among algebraic graph theorists, trying to construct and classify integral graphs.
Although this problem is easy to state, it turns out to be extremely hard. It has been
attacked by many mathematicians during the past 40 years, and it is still wide open.
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Since the general problem of classifying integral graphs seems too difficult, graph
theorists started to investigate special classes of graphs, including trees, graphs with
bounded degrees, regular graphs, and Cayley graphs. The first considerable result on
integral trees was given byWatanabe and Schwenk in [21] and [22]. Then, manymath-
ematicians constructed some infinite classes of integral trees with bounded diameters
([6,20,23]). It is heartening that Csikvári [9] constructed integral trees with arbitrarily
large diameters. With regard to integral regular graphs, the first significant result was
given by Bussemaker and Cvetković [7] in 1976, which showed that there are only 13
connected cubic integral graphs. About 20 years later, in 2000, Stevanović considered
the 4-regular integral graphs avoiding±3 in the spectrum and gave the possible spectra
of 4-regular bipartite integral graphs without±3 as their eigenvalues in [19]. Recently,
Lepović [16] proposed that there exist exactly 93 non-regular, bipartite integral graphs
with maximum degree 4.

Given a finite group G and a subset 1 /∈ S ⊆ G with S = S−1, the Cayley
graph X (G, S) has vertex set G and two vertices a, b are adjacent if a−1b ∈ S. In
1982, Bridges and Mena [5] gave a complete characterization of integral graphs over
abelian groups and So [18] found a new proof for integral circulant graphs in 2005.
Later, Abdollahi and Vatandoost [1] showed that there are exactly seven connected
cubic integral Cayley graphs in 2009. About the same year, Klotz and Sander [14]
proved that, for an abelian group G, if the Cayley graph X (G, S) is integral, then S
belongs to the Boolean algebra B(FG) generated by the subgroups of G. Moreover,
they conjectured that the converse is also true, which has been proved by Alperin and
Peterson [3].

In 2014, Cheng, Lau and Wong (cf. [8, Corollary 1.2]) presented that the normal
Cayley graphs over symmetric groups are integral (a Cayley graph is said to be normal
if its generating set S is closed under conjugation). In the same year, Alperin [2] gave a
theoretical characterization of integral Cayley graphs over finite groups; however, it is
far from being solved to obtain an explicitly characterization of integral Cayley graphs
over non-abelian groups. As a simple attempt to this aspect, we try to characterize
integral Cayley graphs over dihedral groups. At first, by using the expression of spectra
of Cayley graphs, we obtain the necessary and sufficient conditions for the integrality
of Cayley graphs over the dihedral group Dn (see Theorems 2.2 and 3.3). In terms
of atoms of Boolean algebra of Dn , we also obtain a simple sufficient condition (see
Corollary 3.2) and a necessary condition (see Corollary 3.3) for the integrality of
Cayley graphs over Dn . In particular, we determine all integral Cayley graphs over
Dp for a prime p (see Theorem 4.2).

2 The Spectra of Cayley Graphs Over Dihedral Groups

First of all, we review some basic definitions and notations of representation theory
for latter use.

Let G be a finite group and V an n-dimensional vector space over C. A repre-
sentation of G on V is a group homomorphism ρ : G → GL(V ), where GL(V )

denotes the group of automorphisms of V . The degree of ρ is the dimension of V .
Two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) of G are called
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equivalent, written as ρ1 ∼ ρ2, if there exists an isomorphism T : V1 → V2 such that
Tρ1(g) = ρ2(g)T for all g ∈ G.

Let ρ : G → GL(V ) be a representation. The character χρ : G → C of ρ is
defined by setting χρ(g) = Tr(ρ(g)) for g ∈ G, where Tr(ρ(g)) is the trace of
the representation matrix of ρ(g) with respect to some basis of V . The degree of the
characterχρ is just the degree ofρ, which equalsχρ(1). A subspaceW ofV is said to be
G-invariant if ρ(g)w ∈ W for each g ∈ G andw ∈ W . IfW is aG-invariant subspace
of V , then the restriction of ρ on W , i.e., ρ|W : G → GL(W ), is a representation of
G on W . Obviously, {1} and V are always G-invariant subspaces, which are called
trivial. We say that ρ is an irreducible representation and χρ an irreducible character
of G, if V has no non-trivial G-invariant subspaces. One can refer to [17] for more
information about representation theory.

If we build synthetically a vector space CG whose basis consists of the elements
of G, i.e.,

CG =

⎧
⎨

⎩
∑

g∈G
cgg | cg ∈ C

⎫
⎬

⎭ ,

then the (left) regular representation of G is the homomorphism L : G → GL(CG)

defined by

L(g)
∑

h∈G
chh =

∑

h∈G
chgh =

∑

x∈G
cg−1x x

for each g ∈ G. The following result about regular representation is well known.

Lemma 2.1 ([17]) Let L be the regular representation of G. Then

L ∼ d1ρ1 ⊕ d2ρ2 ⊕ · · · ⊕ dhρh,

where ρ1, . . . , ρh are all non-equivalent irreducible representations of G and di is the
degree of ρi (1 ≤ i ≤ h).

Suppose that X = X (G, S) is an undirected Cayley graph without loops, that is, S
is inverse-closed and does not contain the identity. Let L be the regular representation
of G, and R(g) the representation matrix corresponding to L(g) for g ∈ G. Babai [4]
noted the adjacency matrix of X (G, S) can be expressed in terms of R(g).

Lemma 2.2 ([4]) Let G be a finite group of order n, and let S ⊆ G\{1} be such
that S = S−1. Then, the adjacency matrix A of X (G, S) can be expressed as A =∑

s∈S R(s), where R(s) is the representation matrix corresponding to L(s).

Let ρ1, . . . , ρh be all non-equivalent irreducible representations of G with degrees
d1, . . . , dh (d21 + · · · + d2h = n), respectively. Denote by Ri (g) the representation
matrix corresponding to ρi (g) for g ∈ G and 1 ≤ i ≤ h. Therefore, by Lemma 2.1,

L ∼ d1ρ1 ⊕ · · · ⊕ dhρh,
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Table 1 Character table of Dn
for odd n ak bak

ψ1 1 1

ψ2 1 −1

χh 2 cos
(
2khπ
n

)
0

which means that there exists an orthogonal matrix P such that

PR(g)P−1 = d1R1(g) ⊕ d2R2(g) ⊕ · · · ⊕ dh Rh(g)

for each g ∈ G. Therefore, we have

PAP−1 = P

(
∑

s∈S
R(s)

)

P−1 = d1
∑

s∈S
R1(s) ⊕ · · · ⊕ dh

∑

s∈S
Rh(s).

Suppose that λi,1, . . . , λi,di are all eigenvalues of the matrix
∑

s∈S Ri (s) (1 ≤ i ≤ h).
The spectrum of X (G, S) is given by

Spec(X (G, S)) =
{
[λ1,1]d1, . . . , [λ1,d1 ]d1, . . . , [λh,1]dh , . . . , [λh,dh ]dh

}
.

Babai thus proved

Lemma 2.3 ([4]) The spectrum of X (G, S) is given by

Spec(X (G, S)) =
{
[λ1,1]d1, . . . , [λ1,d1 ]d1, . . . , [λh,1]dh , . . . , [λh,dh ]dh

}
,

where λti,1 + λti,2 + · · · + λti,di =
∑

s1,...,st∈S χρi

(∏t
k=1 sk

)
for any natural number t.

Denote by Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ the dihedral group of order 2n.
Now we list the character table of Dn .

Lemma 2.4 ([17]) The character table of Dn is given in Table 1 if n is odd, and in
Table 2 otherwise, where ψi and χ j are irreducible characters of degree one and two,
respectively, and 1 ≤ h ≤ ⌊ n−1

2 ⌋.

Lemmas 2.3 and 2.4 yield the spectra of Cayley graphs over Dn immediately, as in
[4, Proposition 4.1].

Theorem 2.1 ([4]) Let Dn be a dihedral group and S ⊆ Dn\{1} satisfying S = S−1.
Then

Spec(X (Dn, S)) =
{
[λi ]1; [µh1]2, [µh2]2 | i = 1, . . . ,m; h = 1, 2, . . . , ⌊n − 1

2
⌋
}
,
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Table 2 Character table of Dn
for even n ak bak

ψ1 1 1

ψ2 1 −1

ψ3 (−1)k (−1)k

ψ4 (−1)k (−1)k+1

χh 2 cos
(
2khπ
n

)
0

where m = 2 if n is odd and m = 4 otherwise, and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λi =
∑

s∈S
ψi (s), i = 1, . . . ,m;

µh1 + µh2 =
∑

s∈S
χh (s), h = 1, 2, . . . , ⌊ n−1

2 ⌋;

µ2
h1 + µ2

h2 =
∑

s1,s2∈S
χh (s1s2), h = 1, 2, . . . , ⌊ n−1

2 ⌋.
(1)

Let A, B be two subsets of a group G. For any character χ of G, we denote
χ(A) = ∑

a∈A χ(a) and χ(AB) = ∑
a∈A,b∈B χ(ab). Particularly, χ(A2) =∑

a1,a2∈A χ(a1a2).

Theorem 2.2 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group,
and let S = S1 ∪ S2 ⊆ Dn\{1} be such that S = S−1, where S1 ⊆ ⟨a⟩ and S2 ⊆ b⟨a⟩.
Then, X (Dn, S) is integral if and only if the following two conditions hold for 1 ≤
h ≤ ⌊ n−1

2 ⌋:
(i) χh (S1), χh (S

2
1 )+ χh (S

2
2 ) are integers;

(ii) &h(S) = 2
[
χh (S

2
1 )+ χh (S

2
2 )
]
−
[
χh (S1)

]2 is a square number.

Proof Note that S1S2 = {s1s2 | s1 ∈ S1, s2 ∈ S2} ⊆ b⟨a⟩ and S2S1 ⊆ b⟨a⟩. By
Lemma 2.4, we have χh(S1S2) = 0 = χh(S2S1). Thus,

χh (S) =
∑

s1∈S1
χh (s1)+

∑

s2∈S2
χh (s2) = χh(S1),

χh (S
2) =

∑
s1,s2∈S

χh (s1s2)

= χh (S
2
1 )+ χh (S1S2)+ χh (S2S1)+ χh (S

2
2 )

= χh (S
2
1 )+ χh (S

2
2 ).

Then, the spectrum of X (Dn, S) presented in (1) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

λi =
∑

s∈S
ψi (s) = ψi (S), i = 1, . . . ,m;

µh1 + µh2 = χh (S1), h = 1, 2, . . . , ⌊ n−1
2 ⌋;

µ2
h1 + µ2

h2 = χh (S
2
1 )+ χh (S

2
2 ), h = 1, 2, . . . , ⌊ n−1

2 ⌋.
(2)
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First suppose that X (Dn, S) is integral. From (2), we know thatχh (S1) andχh (S
2
1 )+

χh(S22 ) must be integers, and thus (i) holds. Since µh1 and µh2 are integers, and they
are also the roots of the following quadratic equation:

x2 − χh (S1) · x + 1
2

[
χh (S1)

2 − (χh (S
2
1 )+ χh (S

2
2 )
]
= 0, (3)

the discriminant&h(S) = 2
[
χh (S

2
1 )+ χh (S

2
2 )
]
−
[
χh (S1)

]2 must be a square number,
and thus (ii) follows.

Next suppose that (i) and (ii) hold. Then, the solutions µh1 and µh2 of (3) must be
rational. This implies that µh1 and µh2 must be integers because they are algebraic
integers. Additionally, the eigenvalues λi are always integers. Hence, X (Dn, S) is
integral. ⊓.

Let Cn = ⟨a⟩ be the cyclic group of order n. It is well known in [17] that the
irreducible characters of Cn can be presented by

φh(ak) = e
2hkπ
n i, where 0 ≤ h ≤ n − 1. (4)

Particularly, φ0(ak) = 1. We have

1
n

n−1∑

k=0

φh(ak) = ⟨φh,φ0⟩ = 0 for 1 ≤ h ≤ n − 1. (5)

Theoretically, Theorem2.2 gives a necessary and sufficient condition for the integrality
of Cayley graphs over dihedral groups. As an application of Theorem 2.2, we give a
class of integral X (Dn, S).

Corollary 2.1 For odd number m, let D2m = ⟨a, b | a2m = b2 = 1, bab = a−1⟩ be
the dihedral group of order 4m. Let S1 = {am}, S2 = b⟨a2⟩ and S = S1 ∪ S2. Then,
X (D2m, S) is connected and integral.

Proof It is easy to see that S = S−1 generates D2m , and so X (D2m, S) is connected. By
Lemma 2.4, we have χh (S1) = 2 cos( 2hmπ

2m ) = ±2, and χh (S
2
1 ) = 2 due to S21 = {1}.

By simple calculation, S22 consists of all elements of ⟨a2⟩ in which each one appears
m times, that is, S22 = m ∗ ⟨a2⟩. From (4), (5) and Lemma 2.4, we have

χh (S
2
2 ) = m

m−1∑

k=0

χh (a
2k) = m

m−1∑

k=0

2 cos
2h · 2kπ

2m
= m

m−1∑

k=0

2 cos
2hkπ
m

= m
m−1∑

k=0

(
cos

2hkπ
m

+ cos
2h(m − k)π

m

)

= m

(
m−1∑

k=0

e
2hkπ
m i +

m−1∑

k=0

e
2h(m−k)π

m i

)

= 2m
m−1∑

k=0

e
2hkπ
m i
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= 2m
m−1∑

k=0

φh((a2)k) = 2m · m⟨φh,φ0⟩ = 0.

By Theorem 2.2, X (D2m, S) is integral. ⊓.

Remark 1 In fact, the spectrum of the graph X (D2m, S) in Corollary 2.1 can be
obtained easily byTheorem2.1,which is

{
−m − 1,−m + 1,m − 1,m+1, [−1]2m−2,

[1]2m−2}.

In the next section, we will simplify the result of Theorem 2.2 and provide infinite
classes of integral Cayley graphs over dihedral groups in terms of Boolean algebra on
cyclic groups.

3 The Necessary and Sufficient Condition for the Integrality of
X (Dn, S)

Alperin and Peterson [3] give a necessary and sufficient condition for the integrality
of Cayley graphs over abelian groups, in which they introduce some definitions such
as Boolean algebra and atoms for a group. Let G be a finite group, and FG the set
consisting of all subgroups of G. Then, the Boolean algebra B(G) is the set whose
elements are obtained by arbitrarily finite intersections, unions, and complements of
the elements in FG . The minimal non-empty elements of B(G) are called atoms.
Clearly, distinct atoms are disjoint. Alperin and Peterson show that each element of
B(G) is the union of some atoms, and each atom of B(G) has the form [g] = {x |
⟨x⟩ = ⟨g⟩, x ∈ G}, where g ∈ G.

We say that a subset S ⊆ G is integral if χ(S) = ∑
s∈S χ(s) is an integer for

every character χ of G. From Lemma 2.3, we know that S must be an integral set
if the Cayley graph X (G, S) is integral. The following elegant result gives a simple
characterization of integral Cayley graphs over an abelian group G by using integral
sets and atoms of B(G).

Theorem 3.1 ([3], Theorem 5.1 and Corollary 7.2) Let G be an abelian group. Then,
S ⊆ G is integral iff S ∈ B(G) iff S is a union of atoms of B(G) iff X (G, S) is integral.

However, the statement of Theorem 3.1 is not true for non-abelian groups and is not
true for dihedral groups. Notice that the dihedral group Dn is the semidirect product of
cyclic group Cn by C2, i.e., Dn = Cn !C2. In what follows, we characterize integral
X (Dn, S) by using the Boolean algebra of the cyclic group Cn .

Let S be a subset of G. A multi-set based on S, denoted by Sm , is defined by a
multiplicity function mS : S → N, where mS(s) (s ∈ S) counts how many times s
appears in themulti-set.We setmS(s) = 0 for s /∈ S. Themulti-set Sm is called inverse-
closed if mS(s) = mS(s−1) for each s ∈ S and integral if χ(Sm) =∑s∈S mS(s)χ(s)
is an integer for each character χ of G. Besides, if no confusion occurs, we might
write χ(Sm) =∑s∈Sm χ(s) instead of χ(Sm) =∑s∈S mS(s)χ(s).

For S ∈ B(G), we know that S is the union of some atoms, say S = [g1]∪[g2]∪· · ·∪
[gk]. Denote by Smg1,g2,...,gk the multi-set with multiplicity functionmg1,g2,...,gk , where
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mg1,g2,...,gk (s) = mi ∈ N for each s ∈ [gi ] and 1 ≤ i ≤ k; that is, Smg1,g2,...,gk =
m1 ∗ [g1] ∪ m2 ∗ [g2] ∪ · · · ∪ mk ∗ [gk]. We define C(G) = {Smg1,g2,...,gk | S =
[g1] ∪ [g2] ∪ · · · ∪ [gk] ∈ B(G), gi ∈ G, k ∈ N} to be the collection of all multi-sets
such as Smg1,g2,...,gk , which is called the integral cone over B(G). By Theorem 3.1, T
is an integral set of the abelian group G iff T ∈ B(G). With respect to multi-sets, we
get the similar result by the same method of [3, Theorem 5.1]. For a multi-subset Tm

of G, let vTm be the vector indexed by the elements of G such that vTm (a) = mT (a)
for any a ∈ G. If Tm is integral, as in the proof of [3, Theorem 5.1], we also get that
vTm = m1v[a1] + m2v[a2] + · · · + mkv[ak ] and hence Tm = m1 ∗ [a1] ∪ m2 ∗ [a2] ∪
· · · ∪ mk ∗ [ak] ∈ C(G). It follows that

Lemma 3.1 Let G be an abelian group, and Tm a multi-subset of G. Then Tm is
integral if and only if T m ∈ C(G), where C(G) is the integral cone over B(G).

Remark 2 This result was first given by Bridges and Mena [5] in a different way and
generalized by DeVos et al. [11].

Lemma 3.2 Let U be a multi-set of integers satisfying U = −U, and let n, h be two
positive integers. Then

∑
u∈U cos 2huπ

n =∑u∈U e
2huπ
n i.

Proof Since U = −U , we have
∑

u∈U e
2huπ
n i =∑u∈U e

2h(−u)π
n i. Therefore,

2
∑

u∈U
e
2huπ
n i =

∑

u∈U
e
2huπ
n i +

∑

u∈U
e
2h(−u)π

n i =
∑

u∈U

(
e
2huπ
n i + e

2h(−u)π
n i

)

=
∑

u∈U
2 cos

2huπ

n
.

This completes the proof. ⊓.
Lemma 3.3 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group, and
Tm an inverse-closed multi-subset of ⟨a⟩. Let χh and φh be the irreducible characters
of Dn and ⟨a⟩, respectively. We have
(1) χh (T

m) = 2φh(Tm) for 1 ≤ h ≤ ⌊ n−1
2 ⌋;

(2) χh (T
m) is and integer for all 1 ≤ h ≤ ⌊ n−1

2 ⌋ iff φh(Tm) is an integer for all
0 ≤ h ≤ n − 1.

Proof Since Tm is inverse-closed, there exists a multi-set U = −U of integers such
that Tm = {au | u ∈ U }. By Lemma 3.2, we have

χh(Tm)=
∑

u∈U
χh(au)=

∑

u∈U
2 cos

2huπ

n
=2

∑

u∈U
e
2huπ
n i=2

∑

u∈U
φh(au) = 2φh(Tm).

Thus (1) holds.
Notice that both χh(Tm) and φh(Tm) are algebraic integers. We claim that χh(Tm)

is an integer iff φh(Tm) is an integer for each 1 ≤ h ≤ ⌊ n−1
2 ⌋. Next we consider

φn−h(Tm) for 1 ≤ h ≤ ⌊ n−1
2 ⌋. By Lemma 3.2, we have
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φn−h(Tm) =
∑

u∈U
e
2(n−h)uπ

n i =
∑

u∈U
cos

2(n − h)uπ

n
=
∑

u∈U
cos

2huπ

n

=
∑

u∈U
e
2huπ
n i = φh(Tm).

Thus φn−h(Tm) is an integer iff φh(Tm) is an integer. Also note that φ0(Tm) and
φ n

2
(Tm) (for even n) are always integers. It follows (2). ⊓.
By Lemmas 3.1 and 3.3, we have the following result.

Theorem 3.2 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group,
and Tm an inverse-closed multi-set with T ⊆ ⟨a⟩ ⊆ Dn. Then χh (T

m) is an integer
for all 1 ≤ h ≤ ⌊ n−1

2 ⌋ if and only if T m ∈ C(⟨a⟩). In particular, χh (T ) is an integer
for all 1 ≤ h ≤ ⌊ n−1

2 ⌋ if and only if T ∈ B(⟨a⟩).
Recall that the atom of B(G) containing g ∈ G has the form [g] = {x | ⟨x⟩ =

⟨g⟩, x ∈ G}. Thus, for cyclic group ⟨a⟩ of order n, the atom of B(⟨a⟩) containing
ad ∈ ⟨a⟩, where d|n, can be presented as [ad ] = {al | (l, n) = d}, where (l, n) stands
for the greatest common divisor of l and n.

Lemma 3.4 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group and
T ⊆ ⟨a⟩. If T ∈ B(⟨a⟩), then 2χh (T

2) = (χh (T ))
2 for 1 ≤ h ≤ ⌊ n−1

2 ⌋.

Proof Without loss of generality, suppose that T = [ad1 ] ∪ [ad2 ] ∪ · · · ∪ [adk ] ⊆
⟨a⟩ with di |n for i = 1, . . . , k. Let (i = {1 ≤ li ≤ n | (li , n) = di }. We have
[adi ] = {ali | (li , n) = di } = {ali | li ∈ (i }. Thus, by setting ( = ∪i=k

i=1(i , we have
T = {al | l ∈ (} and T 2 = {as+t | s, t ∈ (}. By Lemma 3.2, we have

2χh (T
2) = 2

∑

s,t∈(

χh (a
s+t ) = 2

∑

s,t∈(

2 cos
2h(s + t)π

n
= 4

∑

s,t∈(

e
2h(s+t)π

n i

= 4

(
∑

s∈(

e
2hsπ
n i

)(
∑

t∈(

e
2htπ
n i

)

= 4

(
∑

s∈(

cos
2hsπ
n

)(
∑

t∈(

cos
2htπ
n

)

=
(
∑

s∈(

2 cos
2hsπ
n

)(
∑

t∈(

2 cos
2htπ
n

)

=
(
∑

s∈(

χh (a
s)

)(
∑

t∈(

χh (a
t )

)

=
(
χh (T )

)2
.

This completes the proof. ⊓.
From Theorem 3.2 and Lemma 3.4, we get the following corollary immediately.

Corollary 3.1 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group and
T ⊆ ⟨a⟩. If T ∈ B(⟨a⟩), then χh (T ), χh (T

2) are integers and 2χh (T
2) is a square

number for all 1 ≤ h ≤ ⌊ n−1
2 ⌋.

Using these preparations above, the result of Theorem 2.2 can be simplified as the
following theorem.
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Theorem 3.3 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group of
order 2n, and let S = S1 ∪ S2 ⊆ Dn\{1} be such that S = S−1, where S1 ⊆ ⟨a⟩ and
S2 ⊆ b⟨a⟩. Then X (Dn, S) is integral if and only if S1 ∈ B(⟨a⟩) and 2χh (S

2
2 ) is a

square number for all 1 ≤ h ≤ ⌊ n−1
2 ⌋.

Proof First suppose that X (Dn, S) is integral. By Theorem 2.2, χh (S1) is an integer
for all 1 ≤ h ≤ ⌊ n−1

2 ⌋. By Theorem 3.2, S1 ∈ B(⟨a⟩). Then, by Lemma 3.4, we have

2χh (S
2
1 ) =

(
χh (S1)

)2. Therefore,

&h(S) = 2
[
χh (S

2
1 )+ χh (S

2
2 )
]

−
[
χh (S1)

]2 = 2χh (S
2
2 ).

Again by Theorem 2.2, &h(S) = 2χh (S
2
2 ) is a square number for all 1 ≤ h ≤ ⌊ n−1

2 ⌋.
Conversely, suppose that S1 ∈ B(⟨a⟩) and 2χh (S

2
2 ) is a square number for all

1 ≤ h ≤ ⌊ n−1
2 ⌋. By Corollary 3.1, both χh (S1) and χh (S

2
1 ) are integers for each h.

Moreover, χh (S
2
2 )must be an integer because 2χh (S

2
2 ) is a square number and χh (S

2
2 )

is an algebraic integer. Therefore, χh (S
2
1 ) + χh (S

2
2 ) is an integer. Since S1 ∈ B(⟨a⟩)

and 2χh (S
2
2 ) is a square number, by Lemma 3.4,&h(S) = 2χh (S

2
2 ) is a square number.

Thus, X (Dn, S) is integral by Theorem 2.2. ⊓.

Theorem 3.3 gives a criterion to find integral X (Dn, S), from which we get infinite
classes of integral Cayley graphs over dihedral groups in the following corollary.

Corollary 3.2 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group of
order 2n, and let S = S1 ∪ S2 ⊆ Dn\{1} be such that S = S−1, where S1 ⊆ ⟨a⟩ and
S2 ⊆ b⟨a⟩. If S1, bS2 ∈ B(⟨a⟩), then X (Dn, S) is integral.

Proof By Theorem 3.3, it suffices to show that 2χh (S
2
2 ) is a square number for each

1 ≤ h ≤ ⌊ n−1
2 ⌋. Since bS2 ∈ B(⟨a⟩), bS2 and S2 can be written as

bS2 = [ad1] ∪ [ad2 ] ∪ · · · ∪ [adk ] and S2 = b[ad1 ] ∪ b[ad2 ] ∪ · · · ∪ b[adk ],

for some di |n where i = 1, . . . , k. Therefore,

(bS2)2 = {al1+l2 | l1, l2 ∈ (} and S22 = {al1−l2 | l1, l2 ∈ (},

where ( = {ℓ | (ℓ, n) ∈ {d1, . . . , dk}}. Note that ( = −( (mod n). We have S22 =
(bS2)2. Since bS2 ∈ B(⟨a⟩), by Lemma 3.4,

2χh (S
2
2 ) = 2χh

(
(bS2)2

)
= χ2

h
(bS2)

is a square number. ⊓.

Corollary 3.2 gives an explicit condition for the integrality of X (Dn, S). However,
this sufficient condition is not necessary.We will give a counterexample in Example 1.
For this purpose, we need to introduce the famous Ramanujan sum. Let s ≥ 0, n ≥ 1
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be two integers. The Ramanujan sum is defined by c(s, n) = ∑(k,n)=1 e
2skπ
n i, which

is known to be an integer (see [10] for reference):

c(s, n) = ϕ(n)

ϕ
(

n
(s,n)

)µ
(

n
(s, n)

)
(6)

where ϕ(·) and µ(·) are the Euler’s totient function and Möbius function respectively.
Therefore, it is easy to see that c(s, n) = µ(n) if (s, n) = 1 and c(s, n) = ϕ(n) if
(s, n) = n.

Example 1 Let D3k = ⟨a, b | a3k = b2 = 1, bab = a−1⟩ be the dihedral group, and
S = S1 ∪ S2, where S1 = [a] and S2 = {b, bak}. Clearly, X (D3k, S) is connected. By
simple computation, S22 = 2 ∗ [1] ∪ [ak] is a multi-subset with multiplicity function:
mS22

(x) = 2 if x ∈ [1] = [an] = {1}, and mS22
(x) = 1 if x ∈ [ak] = {ak, a2k}.

Therefore, by Lemma 3.1, S22 ∈ C(⟨a⟩) is integral. Moreover, by Lemma 3.3 (1), we
have 2χh (S

2
2 ) = 4φh(S22 ). Therefore,

2χh (S
2
2 ) = 4φh(S22 ) = 4

⎛

⎝2e
2hnπ
n i +

∑

(l,n)=k

e
2hlπ
n i

⎞

⎠ = 4

⎛

⎝2+
∑

(s,3)=1

e
2hsπ
3 i

⎞

⎠

= 4 (2+ c(h, 3)) .

If 3 " h, then (h, 3) = 1 and so c(h, 3) = µ(3) = −1. It means that 2χh (S
2
2 ) =

4(2 − 1) = 4. If 3|h, then (h, 3) = 3 and so c(h, 3) = ϕ(3) = 2. It means that
2χh (S

2
2 ) = 4(2+ 2) = 16. Thus 2χh (S

2
2 ) is a square number for each 1 ≤ h ≤ ⌊ 3k

2 ⌋.
Moreover, S1 = [a] ∈ B(⟨a⟩). By Theorem 3.3, X (D3k, S) is integral. However,
bS2 = {1, ak} /∈ B(⟨a⟩).

Next we present a necessary condition for the integrality of X (Dn, S).

Corollary 3.3 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group,
and let S = S1 ∪ S2 ⊆ Dn\{1} be such that S = S−1, where S1 ⊆ ⟨a⟩ and S2 ⊆ b⟨a⟩.
If X (Dn, S) is integral, then S1 ∈ B(⟨a⟩) and S22 ∈ C(⟨a⟩).
Proof If X (Dn, S) is integral, then S1 ∈ B(⟨a⟩) and 2χh (S

2
2 ) is a square number for

all 1 ≤ h ≤ ⌊ n−1
2 ⌋ by Theorem 3.3, and so χh (S

2
2 ) must be a rational number. Thus,

we claim that χh (S
2
2 ) ∈ Z because χh (S

2
2 ) is an algebraic integer. By Theorem 3.2,

we get S22 ∈ C(⟨a⟩). ⊓.
Unfortunately, the necessary condition given in Corollary 3.3 is not sufficient yet.

We present a counterexample below.

Example 2 Let D7 = ⟨a, b | a7 = b2 = 1, bab = a−1⟩ be the dihedral group of
order 14 and S = S2 = {ba, ba2, ba4}. It is clear that X (D7, S) is connected. By
simple computation, we have

S2 = {1, 1, 1, a, a2, a3, a4, a5, a6} = 3 ∗ [1] ∪ [a] ∈ C(⟨a⟩).
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Therefore, by Lemma 3.1, S22 ∈ C(⟨a⟩) is integral. Moreover, by Lemma 3.3 (1), we

have 2χh (S
2
2 ) = 4φh(S22 ). Therefore, 2χh (S

2
2 ) = 4φh(S22 ) = 4

(
3+∑6

k=1 e
2hkπ
7 i
)
=

4(3 + c(h, 7)). If 7 " h, then (h, 7) = 1 and so c(h, 7) = µ(7) = −1. It means that
2χh (S

2
2 ) = 4(3 − 1) = 8, which is not a square number. By Theorem 3.3, X (D7, S)

is not integral.

Although the integral Cayley graphs over dihedral groups are completely charac-
terized by Theorem 3.3, it seems difficult to explicitly give all integral X (Dn, S). In
the next section, we will determine all integral X (Dn, S) for n being a prime.

4 Integral Cayley Graphs Over Dp

Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ be the dihedral group of order 2n, and
let S = S1 ∪ S2 ⊆ Dn\{1} be such that S = S−1, where S1 ⊆ ⟨a⟩ and S2 ⊆ b⟨a⟩. We
have known that S1 ∈ B(⟨a⟩) and S22 ∈ C(⟨a⟩) if X (Dn, S) is integral by Corollary
3.3. This implies that S22 has the form

S22 = m1 ∗ [ad1 ] ∪ m2 ∗ [ad2 ] ∪ · · · ∪ mk ∗ [adk ], (7)

for some di |n where i = 1, . . . , k. The multiplicity functionmS22
of the multi-set S22 is

given bymS22
(x) = mi for x ∈ [adi ]. We say that S22 is k-integral if S

2
2 has the form of

(7) with mi ̸= 0 for 1 ≤ i ≤ k. Clearly, S22 always contains 1, and if S2 contains two
distinct elements, then S22 will contain an element different from 1. Taking k = 1 in
(7), then S2 contains only one element and so S22 = {1}, thus 2χh (S

2
2 ) = 4 is a square

number. Then, we have the following result for the 1-integral S22 .

Lemma 4.1 Let Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ and S = S1 ∪ S2 ⊆ Dn\{1}
such that S = S−1, where S1 ⊆ ⟨a⟩ and S2 ⊆ b⟨a⟩. If S1 ∈ B(⟨a⟩) and S2 = {bai }
for any 0 ≤ i ≤ n − 1, then X (Dn, S) is integral.

In what follows, we focus on 2-integral S22 , i.e., S
2
2 = m1 ∗ [ad1]∪m2 ∗ [ad2 ]. Since

S2 ⊆ b⟨a⟩, there exists U ⊂ Zn such that S2 = {bai | i ∈ U }. Then S22 = {au1−u2 |
u1, u2 ∈ U } is a multi-set containing t ∗ {1}, where t = |U | = |S2|. Thus, without loss
of generality, we always assume thatm1 = t and d1 = n. It is interesting to notice that
there is a relation between the 2-integral sets and the difference sets in a group. LetG be
a group of order n with a subset S of order k. Then S is called a (n, k, λ)-difference set
inG provided that the differences ss′−1 for s, s′ ∈ S, s ̸= s′ contain every non-identity
element of G exactly λ times. Difference sets are important in design theory because
they are equivalent to symmetric (n, k, λ) designs with a regular automorphism group
[15]. We refer the readers to [13] for more information about difference sets. By the
arguments above, if S22 is 2-integral, then S22 = t ∗ [1] ∪ m2 ∗ [ad2 ]. If additional
[ad2 ] = ⟨a⟩\{1}, then S′

2 = bS2 is just the (n, t,m2)-difference set in ⟨a⟩ because
S′S′−1 = S22 . In fact, we will see that the difference sets in Cp for a prime p are very
important when we consider the integral Cayley graphs in Dp. The underlying relation
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between difference sets in ⟨a⟩ and integral Cayley graphs over Dn is an interesting
area of future research.

Suppose that S2 ∈ b⟨a⟩. By Lemma 3.3 (1), χh (S
2
2 ) = 2φh(S22 ) for 1 ≤ h ≤ ⌊ n−1

2 ⌋.
Thus 2χh (S

2
2 ) is a square number if and only if φh(S22 ) is a square number. The

following result gives a necessary and sufficient condition for φh(S22 ) being a square
number when S22 is 2-integral.

Lemma 4.2 Let n = pα1
1 pα2

2 · · · pαr
r (pi ≥ 3, r ≥ 1) be the prime factorization of n

and S2 ⊆ b⟨a⟩ ⊆ Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩. If S22 = t ∗ [1]∪m2 ∗ [ad2 ]
(implying that |S2| = t) is 2-integral, then φh(S22 ) is a square number for all 1 ≤ h ≤
⌊ n−1

2 ⌋ if and only if n
d2

= pi for some i (1 ≤ i ≤ r), and t = pi − 1 or pi .

Proof Let n2 = n
d2
, according to (4) and (6) we have

φh(S22 ) =
∑

x∈S22

φh(x) = tφh(1)+
∑

x∈[ad2 ]
m2φh(x)

= t + m2
∑

(l,n)=d2

e
2hlπ
n i = t + m2

∑

(l/d2,n2)=1

e
2hl/d2π

n2
i

= t + m2c(h, n2) = t + m2
ϕ(n2)

ϕ
(

n2
(h,n2)

)µ
(

n2
(h, n2)

)
. (8)

By counting the number of elements of S22 , we have

t + m2ϕ(n2) = t2. (9)

From (8) and (9) we have

φh(S22 ) = t + t (t − 1)

ϕ
(

n2
(h,n2)

)µ
(

n2
(h, n2)

)
. (10)

Nowwe consider the sufficiency. Suppose that there exists some i such that n2 = pi ,
and t = pi − 1 or pi . For any h satisfying (h, n2) = 1, from (10) we have

φh(S22 ) =
t (pi − t)
pi − 1

. (11)

Thus φh(S22 ) = 1 if t = pi − 1, and φh(S22 ) = 0 if t = pi . Additionally, for any h
satisfying (h, n2) = n2, from (10) we have φh(S22 ) = t2. Thus, φh(S22 ) is always a
square number for 1 ≤ h ≤ ⌊ n−1

2 ⌋.
Conversely, assume that φh(S22 ) is a square number, say φh(S22 ) = w2

h (wh ≥ 0)
for 1 ≤ h ≤ ⌊ n−1

2 ⌋. Notice that n2 is a factor of n. We need to consider the following
three cases:

Case 1. n2 = pi for some i (1 ≤ i ≤ r );
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Taking h such that (h, n2) = 1, then we also have (11), from which we obtain that
t > w2

h due to t ≥ 2, and

pi =
(t + wh)(t − wh)

t − w2
h

. (12)

Note that t−wh ≥ t−w2
h ≥ 1. First assume that t−wh = 1. Then t−wh = t−w2

h = 1,
and so wh = 0 or wh = 1. If wh = 0, then t = wh + 1 = 1, which is impossible. If
wh = 1, then t = 2, and pi = 3 by (12). Next assume that t − wh > 1. Since pi is a
prime, from (12) we have t −wh = t −w2

h or t +wh = t −w2
h . If t +wh = t −w2

h ,
then wh = 0; if t − wh = t − w2

h , then wh = 0 or wh = 1. Thus, from (12) we have
t = pi if wh = 0, and t = pi − 1 if wh = 1.

Case 2. p2i |n2 for some i (1 ≤ i ≤ r );

By taking h such that n2
(h,n2)

= n2, we have µ
(

n2
(h,n2)

)
= µ(n2) = 0, which leads

to that φh(S22 ) = t by (10). Thus t = |S2| is a square number independent with h. By
taking another h such that n2

(h,n2)
= pi , we have φh(S22 ) = t (pi−t)

pi−1 by (10), which gives
t = pi − 1 or pi by the arguments of Case 1. Finally, if t = pi then pi is a square
number, a contradiction; if t = pi −1, we have t2 = (pi −1)2 < pi (pi −1) ≤ ϕ(n2),
which contradicts (9). Thus, in this case, φh(S22 ) cannot be always a square number
for 1 ≤ h ≤ ⌊ n−1

2 ⌋.
Case 3. pi p j |n2 for some i ̸= j (1 ≤ i, j ≤ r ).
By taking h such that n2

(h,n2)
= pi , we have φh(S22 ) = t (pi−t)

pi−1 by (10), which
gives t = pi − 1 or pi by the arguments of Case 1. Similarly, by taking h such that
n2

(h,n2)
= p j , we have t = p j − 1 or p j . Note that t = |S2| is independent with h

and i ̸= j . We have pi − 1 = p j or pi = p j − 1, which are all impossible because
both of pi and p j are odd primes. Thus φh(S22 ) cannot be always a square number for
1 ≤ h ≤ ⌊ n−1

2 ⌋ in this case.
This completes the proof. ⊓.

By Lemma 4.2, we gives a specific characterization of integral X (Dn, S) for S22
being 2-integral.

Theorem 4.1 Let n = pα1
1 pα2

2 · · · pαr
r where pi ≥ 3 is a prime. Let 1 /∈ S = S1∪S2 ⊆

Dn = ⟨a, b | an = b2 = 1, bab = a−1⟩ with S = S−1, S1 ⊆ ⟨a⟩ and S2 ⊆ b⟨a⟩. If S22
is a 2-integral, then the Cayley graph X (Dn, S) is integral if and only if S1 ∈ B(⟨a⟩)
and S2 = ba j ⟨a

n
pi ⟩\{bak

n
pi
+ j } or ba j ⟨a

n
pi ⟩, where 1 ≤ i ≤ r , 0 ≤ k ≤ pi − 1 and

0 ≤ j ≤ n
pi

− 1.

Proof We first consider the sufficiency. If S2 = ba j ⟨a
n
pi ⟩\{bak

n
pi
+ j }, we have

S22 =
(
ba j ⟨a

n
pi ⟩ · ba j ⟨a

n
pi ⟩\2 ∗

(
ba j ⟨a

n
pi ⟩ · {bak

n
pi
+ j }
))

∪
{
bak

n
pi
+ j · bak

n
pi
+ j
}

=
(
pi ∗ ⟨a

n
pi ⟩\2 ∗ ⟨a

n
pi ⟩
)

∪ {1}

= (pi − 1) ∗ {1} ∪ (pi − 2) ∗ [a
n
pi ].
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Similarly, if S2 = b⟨a
n
pi ⟩a j , we have S22 = pi ∗ {1} ∪ pi ∗ [a

n
pi ]. Thus, by Lemma

4.2, φh(S22 ) is a square number for all 1 ≤ h ≤ ⌊ n−1
2 ⌋, so are 2χh(S22 )(= 4φh(S22 )).

By Theorem 3.3, X (Dn, S) is integral and the sufficiency follows.
For the necessity, let S22 be 2-integral, we may assume that

S22 = t ∗ [1] ∪ m2 ∗
[
ad2
]

(13)

where t = |S2| ≥ 2 and d2|n. Since X (Dn, S) is integral, φh(S22 ) presented in (10) is
a square number for all 1 ≤ h ≤ ⌊ n−1

2 ⌋. By Lemma 4.2, there exists 1 ≤ i ≤ r such

that n2 = n
d2

= pi and t = pi − 1 or pi . If t = pi − 1, we have m2 = t2−t
ϕ(n2)

= pi − 2
from (9). Thus, we may assume that S2 = {bau1 , . . . , baupi−1}, combining (13) we
have

(pi − 1) ∗ {1} ∪ (pi − 2) ∗ [a
n
pi ] = S22 = {aus−ut | 1 ≤ s, t ≤ pi − 1}

= (pi − 1) ∗ {1} ∪ {aus−ut | s ̸= t}.

Therefore, aus−ut ∈ [a
n
pi ] for any s ̸= t . Since au2−u1 , . . . , aupi−1−u1 are different

elements in [a
n
pi ], there exists k1 (1 ≤ k1 ≤ pi − 1) such that

{au2−u1 , . . . , aupi−1−u1} = [a
n
pi ]\{ak1

n
pi }. (14)

Note that u1 can be written as u1 = k2 n
pi

+ j , where 0 ≤ k2 ≤ pi − 1 and 0 ≤ j ≤
n
pi

− 1. Then au1 = ak2
n
pi
+ j and from (14) we have

bS2 =
{
au1 , au2 , . . . , aupi−1

}
=
{
au1
}

∪
{
au2−u1 , . . . , aupi−1−u1

}
·
{
au1
}

= {au1} ∪
(
[a

n
pi ]\{ak1

n
pi }
)
· {au1}

= {ak2
n
pi
+ j

, a(k2+1) n
pi
+ j

, . . . , a(k2+pi−1) n
pi
+ j }\{a(k1+k2) n

pi
+ j }

=
{
a j , a

n
pi
+ j

, . . . , a(pi−1) n
pi
+ j
}
\
{
ak

n
pi
+ j
}

where 0 ≤ k ≤ pi − 1

= ⟨a
n
pi ⟩a j\

{
ak

n
pi
+ j
}
.

Thus S2 = ba j ⟨a
n
pi ⟩\{bak

n
pi
+ j }. Similarly, if t = pi , we have m2 = pi . Assume that

S2 = {bau1 , . . . , baupi }, combining (13) we have

pi ∗ {1} ∪ pi ∗ [a
n
pi ] = S22 = {aus−ut | 1 ≤ s, t ≤ pi − 1}

= pi ∗ {1} ∪ {aus−ut | s ̸= t}.

So we have {au2−u1 , . . . , aupi −u1} = [a
n
pi ]. Similarly, au1 can be written as au1 =

ak2
n
pi
+ j , then we have bS2 = a j ⟨a

n
pi ⟩ and so S2 = ba j ⟨a

n
pi ⟩.

This completes the proof. ⊓.
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Theorem 4.2 For an odd prime p, let Dp = ⟨a, b | a p = b2 = 1, bab = a−1⟩
and S = S1 ∪ S2 such that S = S−1, where S1 ⊆ ⟨a⟩, S2 ⊆ b⟨a⟩. Then, the
Cayley graph X (Dp, S) is integral if and only if S1 ∈ B(⟨a⟩) = {∅, {1}, [a], ⟨a⟩}
and S2 = b⟨a⟩\{bak}, b⟨a⟩ or {bak} where 0 ≤ k ≤ p − 1.

Proof If S2 = {bak}, then X (Dp, S) is integral by Lemma 4.1. If S2 = b⟨a⟩\{bak},
then S22 = (p − 1) ∗ {1} ∪ (p − 2) ∗ [a], thus d2 = 1 and t = |S2| = p − 1. By
Lemma 4.2, φh(S22 ) is a square number for all 1 ≤ h ≤ ⌊ p−1

2 ⌋, so are 2χh(S22 ).
Therefore, by Theorem 3.3, X (Dp, S) is integral. Similarly, if S2 = b⟨a⟩, we have
S22 = p ∗ {1} ∪ p ∗ [a], and so X (Dp, S) is integral. We get the sufficiency. In what
follows, we consider the necessity.

Suppose X (Dp, S) is integral. By Corollary 3.3, we have S1 ∈ B(⟨a⟩) =
{∅, {1}, [a], ⟨a⟩} and S22 ∈ C(⟨a⟩). First suppose that t = |S2| = 1. We have
S2 = {bak} for some 0 ≤ k ≤ p − 1. Next suppose that t = |S2| > 1. We see
that S22 is 2-integral because B(⟨a⟩) has only two atoms. By Theorem 4.1, we have
|S2| = p−1or p. If |S2| = p−1,we obtain that S2 = b⟨a⟩\{bak}where 0 ≤ k ≤ p−1
(note that S2 = b[a]while k = 0); if |S2| = p, we obtain that S2 = b⟨a⟩ = {b}∪b[a].

⊓.

Remark 3 Recall the definition of difference sets. By the proof of Theorem 4.2, we
note that S′

2 = bS2 is a (p, p − 1, p − 2)-difference set and a (p, p, p)-difference set
in ⟨a⟩ when S2 = b⟨a⟩\{bak} and S2 = b⟨a⟩ in Theorem 4.2, respectively.

By Corollary 3.3, if X (Dn, S) is integral then S1 ∈ B(⟨a⟩) and S22 ∈ C(⟨a⟩), which
means that S1 and S22 are clearly found. If we can obtain S2 from (7), the integral
X (Dn, S) will be finally determined by verifying if 2χh (S

2
2 ) is square number (see

Theorem 3.3). However, it seems difficult to do this even if n is a prime. Example 2
provides an instance that S22 = {1, 1, 1, a, a2, a3, a4, a5, a6} = 3∗[1]∪[a] ∈ C(⟨a⟩),
but S2 = {ba, ba2, ba4} is not of the forms stated in Theorem 4.2 (i.e., S2 = b⟨a⟩\bak ,
b⟨a⟩ or {bak}). Hence X (D7, S2) is not integral by Theorem 4.2. In fact, we havemany
such instances, say, S2 = {ba, ba3, ba4, ba8} ⊂ b⟨a⟩, where |⟨a⟩| = 13, is not of
the forms stated in Theorem 4.2, but S22 = 4 ∗ [1] ∪ [a]. Also, X (D13, S2) is not
integral by Theorem 4.2. Note that in the former example, S′

2 = bS2 = {a, a2, a4} is a
(7, 3, 1)-difference set in C7, which is known as the Paley difference set; in the latter
example, S′

2 = bS2 = {a, a3, a4, a8} is a (13, 4, 1)-difference set in C13.
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7. Bussemaker, F.C., Cvetković, D.: There are exactly 13 connected, cubic, integral graphs,Univ.Beograd,

Publ. Elektrotehn. Fak., Ser. Mat. Fiz. 544–576:43–48 (1976)
8. Cheng, Y.K., Lau, T., Wong, K.B.: Cayley graph on symmetric group generated by elements fixing k

points. Linear Algebra Appl. 471, 405–426 (2014)
9. Csikvári, P.: Integral trees of arbitrarily large diameters. J. Algebr. Comb. 32, 371–377 (2010)

10. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory and Ramanujan
Graphs. Cambridge University Press, New York (2003)

11. DeVos, M., Krakovski, R., Mohar, B., Ahmady, A.S.: Integral Cayley multigraphs over Abelian and
Hamiltonian groups. Electron. J. Comb. 20, P63 (2013)

12. Harary, F., Schwenk, A.J.: Which graphs have integral spectra? in Graphs and Combinatorics. Lecture
Notes in Math, vol. 406. Springer, Berlin (1974)

13. Jedwab, J., Davis, J.: A survey of Hadamard difference sets, A Special Research Quarter on Groups,
Difference Sets, and the Monster Walter de Gruyter and Co. pp. 145–156 (1996)

14. Klotz, W., Sander, T.: Integral Cayley graphs over abelian groups. Electron. J. Comb. 17, R81 (2010)
15. Lander, E.S.: Symmetric Designs: an Algebraic Approach, London Mathematical Society Lecture

Notes Series 74. Cambridge University Press, Cambridge (1983)
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